In: Statistics and Probability
Solution :
Given that,
= 3433
= 495
n = 75
At 95% confidence level the z is ,
= 1 - 95% = 1 - 0.95 = 0.05
/ 2 = 0.05 / 2 = 0.025
Z/2 = Z0.025 = 1.96
Margin of error = E = Z/2* ( /n)
=1.96 * (495 / 75)
= 112.0290
At 95% confidence interval estimate of the population mean is,
- E < < + E
3433 - 112.0290 < < 3433 + 112.0290
3320.9710< < 3545.0290
(3320.9710< < 3545.0290 )
Solution :
Given that,
= 3433
= 495
n = 75
At 95% confidence level the z is ,
= 1 - 95% = 1 - 0.95 = 0.05
/ 2 = 0.05 / 2 = 0.025
Z/2 = Z0.025 = 1.96
Margin of error = E = Z/2* ( /n)
=1.96 * (495 / 7500)
=1120.2905
At 95% confidence interval estimate of the population mean is,
- E < < + E
3433 - 1120.2905 < < 3433 + 1120.2905
2312.7095< < 4553.2905
(2312.7095 , 4553.2905 )
a ) is above because sample size is larger