Question

In: Biology

8) Press Add tumor and try to selectively target the hydrogen nuclei at the location of...

8) Press Add tumor and try to selectively target the hydrogen nuclei at the location of the tumor. You can achieve this by changing the frequency of the radio wave or by changing the strength of the main magnetic field. Note: in an actual MRI neither is done and the gradient magnetic field is changed. Explain why changing the strength of the gradient field allows the selective stimulation of the hydrogen nuclei in one slice.

Solutions

Expert Solution

To produce an image, the MRI system must first stimulate hydrogen nuclei in a specific 2D image plane in the body, and then determine the location of those nuclei within that plane as they precess back to their static state. These two tasks are accomplished using gradient coils which cause the magnetic field within a localized area to vary linearly as a function of spatial location. As a result, the resonant frequencies of the hydrogen nuclei are spatially dependent within the gradient. Varying the frequency of the excitation pulses controls the area in the body that is to be stimulated. The location of the stimulated nuclei as they precess back to their static state can also be determined by using the emitted resonant RF-frequency and phase information.

By applying a gradient in the z direction, for example, one can change the resonant frequency required to excite a 2D slice in that plane. Therefore, the spatial location of the 2D plane to be imaged is controlled by changing the excitation frequency. After the excitation sequence is complete, another properly applied gradient in the x direction can be used to spatially change the resonant frequency of the nuclei as they return to their static position. The frequency information of this signal can then be used to locate the position of the nuclei in the x direction. Similarly, a gradient field properly applied in the y direction can be used to spatially change the phase of the resonant signals and, hence, be used to detect the location of the nuclei in the y direction. By properly applying gradient and RF-excitation signals in the proper sequence and at the proper frequency, the MRI system maps out a 3-D section of the body.


Related Solutions

ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT