In: Finance
Alice Smith Investors places $50,000 in an investment fund. One year after making the investment, Smith receives $7500 and continues to receive $7500 annually until 10 such amounts are received. Smith receives nothing further until 15 years after the initial investment, at which time $50,000 is received. Assume MARR = 10% and the planning horizon is 15 years.
What is the present worth, internal rate of return, external rate of return?
Please answer all parts of the question, and include a cashflow diagram
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | |
Initial Investment | $ -50,000.00 | |||||||||||||||
Cash received | $ 7,500.00 | $ 7,500.00 | $ 7,500.00 | $ 7,500.00 | $ 7,500.00 | $ 7,500.00 | $ 7,500.00 | $ 7,500.00 | $ 7,500.00 | $ 7,500.00 | $ - | $ - | $ - | $ - | $ 50,000.00 | |
Net Cash flow | $ -50,000.00 | $ 7,500.00 | $ 7,500.00 | $ 7,500.00 | $ 7,500.00 | $ 7,500.00 | $ 7,500.00 | $ 7,500.00 | $ 7,500.00 | $ 7,500.00 | $ 7,500.00 | $ - | $ - | $ - | $ - | $ 50,000.00 |
MARR | 10% | |||||||||||||||
PV of Cash flow | $ -50,000.00 | $ 6,818.18 | $ 6,198.35 | $ 5,634.86 | $ 5,122.60 | $ 4,656.91 | $ 4,233.55 | $ 3,848.69 | $ 3,498.81 | $ 3,180.73 | $ 2,891.57 | $ - | $ - | $ - | $ - | $ 11,969.60 |
Net Present Value | $ 8,053.86 | |||||||||||||||
Internal rate of return, IRR | 2.29% | |||||||||||||||
External rate of return | 7.05% |
Formulas:
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | |
Initial Investment | -50000 | |||||||||||||||
Cash received | 7500 | 7500 | 7500 | 7500 | 7500 | 7500 | 7500 | 7500 | 7500 | 7500 | 0 | 0 | 0 | 0 | 50000 | |
Net Cash flow | =SUM(B2:B3) | =SUM(C2:C3) | =SUM(D2:D3) | =SUM(E2:E3) | =SUM(F2:F3) | =SUM(G2:G3) | =SUM(H2:H3) | =SUM(I2:I3) | =SUM(J2:J3) | =SUM(K2:K3) | =SUM(L2:L3) | =SUM(M2:M3) | =SUM(N2:N3) | =SUM(O2:O3) | =SUM(P2:P3) | =SUM(Q2:Q3) |
MARR | 0.1 | |||||||||||||||
PV of Cash flow | =B4/(1+$B$6)^B1 | =C4/(1+$B$6)^C1 | =D4/(1+$B$6)^D1 | =E4/(1+$B$6)^E1 | =F4/(1+$B$6)^F1 | =G4/(1+$B$6)^G1 | =H4/(1+$B$6)^H1 | =I4/(1+$B$6)^I1 | =J4/(1+$B$6)^J1 | =K4/(1+$B$6)^K1 | =L4/(1+$B$6)^L1 | =M4/(1+$B$6)^M1 | =N4/(1+$B$6)^N1 | =O4/(1+$B$6)^O1 | =P4/(1+$B$6)^P1 | =Q4/(1+$B$6)^Q1 |
Net Present Value | =SUM(B7:Q7) | |||||||||||||||
Internal rate of return, IRR | =IRR(B7:Q7,100%) | |||||||||||||||
External rate of return | =MIRR(B7:Q7,B6,B6) |