Question

In: Advanced Math

Let R and S be commutative rings with unity. (a) Let I be an ideal of...

Let R and S be commutative rings with unity. (a) Let I be an ideal of R and let J be an ideal of S. Prove that I × J = {(a, b) | a ∈ I, b ∈ J} is an ideal of R × S. (b) (Harder!) Let L be any ideal of R × S. Prove that there exists an ideal I of R and an ideal J of S such that L = I × J.

Solutions

Expert Solution


Related Solutions

Let R be a commutative ring with unity. If I is a prime ideal of R,...
Let R be a commutative ring with unity. If I is a prime ideal of R, prove that I[x] is a prime ideal of R[x].
Let R be a commutative domain, and let I be a prime ideal of R. (i)...
Let R be a commutative domain, and let I be a prime ideal of R. (i) Show that S defined as R \ I (the complement of I in R) is multiplicatively closed. (ii) By (i), we can construct the ring R1 = S-1R, as in the course. Let D = R / I. Show that the ideal of R1 generated by I, that is, IR1, is maximal, and R1 / I1R is isomorphic to the field of fractions of...
Let R be a commutative ring with unity. Prove that f(x) is R[x] is a unit...
Let R be a commutative ring with unity. Prove that f(x) is R[x] is a unit in R[x] iff f(x)=a is of degree 0 and is a unit in R.
Let R be a commutative ring with identity with the property that every ideal in R...
Let R be a commutative ring with identity with the property that every ideal in R is principal. Prove that every homomorphic image of R has the same property.
Let R and S be rings. Denote the operations in R as +R and ·R and...
Let R and S be rings. Denote the operations in R as +R and ·R and the operations in S as +S and ·S (i) Prove that the cartesian product R × S is a ring, under componentwise addition and multiplication. (ii) Prove that R × S is a ring with identity if and only if R and S are both rings with identity. (iii) Prove that R × S is a commutative ring if and only if R and...
say R1, R2,...., Rn are commutative rings with unity. Show that U(R1 + R2 +.... +...
say R1, R2,...., Rn are commutative rings with unity. Show that U(R1 + R2 +.... + Rn) = U( R1) + U(R2)+ .... U(Rn). Where U - is the units of the ring.
9.2.6 Exercise. Let R = Z and let I be the ideal 12Z of R. (i)...
9.2.6 Exercise. Let R = Z and let I be the ideal 12Z of R. (i) List explicitly all the ideals A of R with I ⊆ A. (ii) Write out all the elements of R/I (these are cosets). (iii) List explicitly the set of all ideals B of R/I (these are sets of cosets). (iv) Let π: R → R/I be the natural projection. For each ideal A of R such that I ⊆ A, write out π(A) explicitly...
The Chinese Remainder Theorem for Rings. Let R be a ring and I and J be...
The Chinese Remainder Theorem for Rings. Let R be a ring and I and J be ideals in R such that I + J = R. (a) Show that for any r and s in R, the system of equations x ≡ r (mod I) x ≡ s (mod J) has a solution. (b) In addition, prove that any two solutions of the system are congruent modulo I ∩J. (c) Let I and J be ideals in a ring R...
Let R and S be nontrivial rings (i.e., containing more than just the 0 element), and...
Let R and S be nontrivial rings (i.e., containing more than just the 0 element), and define the projection homomorphism pi_1: R X S --> R by pi_1(x,y)=x. (a) Prove that pi_1 is a surjective homomorphism of rings. (b) Prove that pi_1 is not injective (c) Prove that (R X S)/R (not congruent) R. Please show all parts of answer
Let R be a ring (not necessarily commutative), and let X denote the set of two-sided...
Let R be a ring (not necessarily commutative), and let X denote the set of two-sided ideals of R. (i) Show that X is a poset with respect to to set-theoretic inclusion, ⊂. (ii) Show that with respect to the operations I ∩ J and I + J (candidates for meet and join; remember that I+J consists of the set of sums, {i + j} where i ∈ I and j ∈ J) respectively, X is a lattice. (iii) Give...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT