In: Finance
Suppose the exchange rate is $1.99/£. Let r$ = 6%, r£ = 7%, u = 1.27, d = 0.78, and T = 1. Using a 2-step binomial tree, calculate the value of a $2.10-strike European put option on the British pound.
a. $0.2671
b. $0.3235
c. $0.3435
d. $0.3333
e. $0.3282
PLEASE POST ALL THE STEPS
Strike Price | 2.1 | 1.2107 | 0.8893 | |||
3.2097 | fuu = 0 | |||||
2.5273 | ||||||
1.9900 | 1.9713 | fud= 0.1287 | ||||
1.5522 | ||||||
1.2107 | ||||||
fdd = 0.8893 | ||||||
p = (e^rt-d)/(u-d) | ||||||
e^(0.06/2) - 0.78/(1.27-0.78) | ||||||
1.0305-0.78/0.49 | ||||||
0.2505/0.49 | ||||||
0.5112 | ||||||
fuu=0 | ||||||
fud=0.1287 | ||||||
fdd=0.8893 | ||||||
f = e^(-2rt)(p^2fuu + 2p(1-p)fud+(1-p)^2fdd) | ||||||
e(-0.06)((0.5112^2)*0)+2(0.5112)(1-0.5112)(0.1287)+(1-0.5112)^2*0.8893 | ||||||
0.9418(0+0.0643+0.2125) | ||||||
0.2671 | ||||||