In: Statistics and Probability
Sales price, y (thousands) | Square feet, x1 | Rooms, x2 | Bedrooms, x3 | Age, x4 |
53.5 | 1008 | 5 | 2 | 35 |
49 | 1290 | 6 | 3 | 36 |
50.5 | 860 | 8 | 2 | 36 |
49.9 | 912 | 5 | 3 | 41 |
52 | 1204 | 6 | 3 | 40 |
55 | 1204 | 5 | 3 | 10 |
80.5 | 1764 | 8 | 4 | 64 |
86 | 1600 | 7 | 3 | 19 |
69 | 1255 | 5 | 3 | 16 |
149 | 3600 | 10 | 5 | 17 |
46 | 864 | 5 | 3 | 37 |
38 | 720 | 4 | 2 | 41 |
49.5 | 1008 | 6 | 3 | 35 |
103 | 1950 | 8 | 3 | 52 |
152.5 | 2086 | 7 | 3 | 12 |
85 | 2011 | 9 | 4 | 76 |
60 | 1465 | 6 | 3 | 102 |
58.5 | 1232 | 5 | 2 | 69 |
101 | 1736 | 7 | 3 | 67 |
79.4 | 1296 | 6 | 3 | 11 |
125 | 1996 | 7 | 3 | 9 |
87.9 | 1874 | 5 | 2 | 14 |
80 | 1580 | 5 | 3 | 11 |
94 | 1920 | 5 | 3 | 14 |
74 | 1430 | 9 | 3 | 16 |
69 | 1486 | 6 | 3 | 27 |
63 | 1008 | 5 | 2 | 35 |
67.5 | 1282 | 5 | 3 | 20 |
35 | 1134 | 5 | 2 | 74 |
142.5 | 2400 | 9 | 4 | 15 |
92.2 | 1701 | 5 | 3 | 15 |
56 | 1020 | 6 | 3 | 16 |
63 | 1053 | 5 | 2 | 24 |
60 | 1728 | 6 | 3 | 26 |
34 | 416 | 3 | 1 | 42 |
52 | 1040 | 5 | 2 | 9 |
75 | 1496 | 6 | 3 | 30 |
93 | 1936 | 8 | 4 | 39 |
60 | 1904 | 7 | 4 | 32 |
73 | 1080 | 5 | 2 | 24 |
71 | 1768 | 8 | 4 | 74 |
83 | 1503 | 6 | 3 | 14 |
90 | 1736 | 7 | 3 | 16 |
83 | 1695 | 6 | 3 | 12 |
115 | 2186 | 8 | 4 | 12 |
50 | 888 | 5 | 2 | 34 |
55.2 | 1120 | 6 | 3 | 29 |
61 | 1400 | 5 | 3 | 33 |
147 | 2165 | 7 | 3 | 2 |
210 | 2353 | 8 | 4 | 15 |
60 | 1536 | 6 | 3 | 36 |
100 | 1972 | 8 | 3 | 37 |
44.5 | 1120 | 5 | 3 | 27 |
55 | 1664 | 7 | 3 | 79 |
53.4 | 925 | 5 | 3 | 20 |
65 | 1288 | 5 | 3 | 2 |
73 | 1400 | 5 | 3 | 2 |
40 | 1376 | 6 | 3 | 103 |
141 | 2038 | 12 | 4 | 62 |
68 | 1572 | 6 | 3 | 29 |
139 | 1545 | 6 | 3 | 9 |
140 | 1993 | 6 | 3 | 4 |
55 | 1130 | 5 | 2 | 21 |
The excel data file named “Family-Residences Data” (posted in the content area under Week IX) presents the sale price y (thousands), square footage (x1), number of rooms (x2), number of bedrooms (x3), and age (x4) for each of 63 single-family residences sold in Oxford, Ohio. Use any software of your choice to conduct a multiple regression analysis for this data set. Use the result of this analysis to answer the questions below.
1. Write a regression model that relates the dependent variable
to the independent variables.
2. Interpret the error term in this model. What does it represent?
3. Identify the least squares point estimates of
b0, b1, b2, b3, and
b4 from your software output. Approximate these to
four decimal places when necessary.
4. Write a multiple regression equation that relates sale price
to square footage, number of rooms, number of bedrooms, and
age.
5. Does the model explain a substantial portion of the
variability in sale prices? Explain.
6. Do the signs and magnitudes of the estimated coefficients
appear to be reasonable? Explain.
7. Write the multiple regression hypotheses to be tested.
8. Use F test to test the adequacy of the model with a = .05.
Interpret the result of this test.
9. Use the p-value from your software output to test the
importance of each of the independent variables x1,
x2, x3, and x4 at a= .05. Which
variables are not important? Explain.
10. Use the residential sales estimated equation to predict sales price of a residence that has 1700 square feet, seven rooms, and three bedrooms and is 15 years old.
Sol:
install analysis tool pack excel.
Go to data>data analysis>Regression>Select y as sales price and remaining variables as x.you get the below output:
SUMMARY OUTPUT | ||||||
Regression Statistics | ||||||
Multiple R | 0.851737 | |||||
R Square | 0.725456 | |||||
Adjusted R Square | 0.706522 | |||||
Standard Error | 18.95903 | |||||
Observations | 63 | |||||
ANOVA | ||||||
df | SS | MS | F | Significance F | ||
Regression | 4 | 55088.34 | 13772.08 | 38.31488 | 1.16E-15 | |
Residual | 58 | 20847.8 | 359.4448 | |||
Total | 62 | 75936.13 | ||||
Coefficients | Standard Error | t Stat | P-value | Lower 95% | Upper 95% | |
Intercept | 10.4041 | 11.49694 | 0.904945 | 0.369238 | -12.6095 | 33.41773 |
Square feet, x1 | 0.049911 | 0.008103 | 6.159486 | 7.43E-08 | 0.033691 | 0.066131 |
Rooms, x2 | 6.292436 | 2.527656 | 2.489436 | 0.015684 | 1.232783 | 11.35209 |
Bedrooms, x3 | -11.0008 | 5.867606 | -1.87483 | 0.065854 | -22.7461 | 0.744511 |
Age, x4 | -0.43301 | 0.109692 | -3.94755 | 0.000216 | -0.65258 | -0.21344 |
The rgression eq is
sale price=10.4041+0.049911*squarefeet+6.292436*rooms-11.0008bedrroms-0.43301*age
Solution2:
Error term is standad error of estimate
=18.95903
Solution3:
he least squares point estimates of b0, b1, b2, b3, and b4 from output are:
b0=10.4041
b1=0.0499
b2=6.2924
b3=-11.0008
b4=-0.4330
Solution4:
sale price=10.4041+0.049911*squarefeet+6.292436*rooms-11.0008bedrroms-0.43301*age