Question

In: Physics

16. A 1.8-kg projectile is fired from level ground. The vertical component of the initial velocity...

16. A 1.8-kg projectile is fired from level ground. The vertical component of the initial velocity is 80 m/s and the horizontal component is 16 m/s. Ignore air resistance and the curvature of the earth in this problem. How far in meters does the projectile travel horizontally?

19. If one platter of lasagna uses 1.5 cups of tomato sauce, how many cups of tomato sauce will 4 platters of lasagna require?

20. A sprinter runs 53 meters in 7 seconds. What is his average speed?

Solutions

Expert Solution

Given data for question16:

A projectile of Mass = 1.8 kg Fired from level ground.

Vertical component of initial velocity = 80 m/s

Horizontal component of initial velocity = 16 m/s

Concept:

We can find Net initial velocity and angle of projectile from ground, then we will directly use the formula for Range of Projectile motion.

So, Initial velocity of projectile (u) = 81.58 m/s with an angle of 78.69 from horizontal in counterclockwise.

For projectile motion fired from ground, and projectile landed on same level,

projectile travel horizontally =

(q-19)

one platter of lasagna uses 1.5 cups of tomato sauce,

then for 4 platters of lasagna require = 4*1.5 = 6 cups of tomato sauce

(q-20)

A sprinter runs 53 meters in 7 seconds.


Related Solutions

A 30 kg projectile is launched from the ground at an initial velocity of 300 m/s...
A 30 kg projectile is launched from the ground at an initial velocity of 300 m/s at an angle of 45 degrees above the horizontal. If air resistance is ignored, determine the following: a. The projectile's speed at 2000 meters above the ground. b. The total amount of energy the object has at 3000 m. c. The maximum height of the projectile. d. The maximum distance the projectile travels horizontally.
Answer the following questions for a projectile which is fired across level ground at an initial...
Answer the following questions for a projectile which is fired across level ground at an initial speed of 59.7m/s . Part A) Find the horizontal distance where the projectile lands if it is shot at 40? above the horizontal. Part B) Find the horizontal distance where the projectile lands if it is shot at 50? above the horizontal.
A projectile is fired from the 45 m above the ground (the zero level) with an...
A projectile is fired from the 45 m above the ground (the zero level) with an initial velocity of 285 m/s at an angle of 43.5 degrees above the horizontal; a. How long will this projectile be in the air? b. How high will this projectile be at the highest point of its trajectory? c. What will be the range of this projectile? d. What will be the velocity of this projectile 28.0 seconds after it has been fired? e....
On level ground a shell is fired with an initial velocity of 36.0 m/s at 58.0...
On level ground a shell is fired with an initial velocity of 36.0 m/s at 58.0 ∘ above the horizontal and feels no appreciable air resistance. ((INCLUDE ALL ANSWER WITH THE UNITS LIKE m/s OR WHATEVER)) THANK YOU A) Find the horizontal and vertical components of the shell's initial velocity. B) How long does it take the shell to reach its highest point? C) Find its maximum height above the ground. D) How far from its firing point does the...
Projectile Motion - From Ground - General Launch Angle A rocket is fired at an initial...
Projectile Motion - From Ground - General Launch Angle A rocket is fired at an initial speed v0 = 160.0 m/s from ground level, at an angle θ = 46° above the horizontal. Ignore air resistance. The magnitude of the gravitational acceleration is 9.8 m/s2. Choose the RIGHT as positive x-direction. Choose UPWARD as psotitive y-direction Keep 2 decimal places in all answers A. Find v0x, the x component of the initial velocity (in m/s) B.Find v0y, the y component...
A projectile is fired from ground level at an angle of 63 degree above the horizontal...
A projectile is fired from ground level at an angle of 63 degree above the horizontal with an initial speed of 30 m/s . What is the magnitude of its instantaneous velocity the moment before it hits the ground? Express your answer in meters per second to two significant figures.
A projectile is fired at a height of 2 meters above the ground with an initial...
A projectile is fired at a height of 2 meters above the ground with an initial velocity of 100 meteres per second at an angle of 35° with the horizontal. Round each result to the nearest tenths of a unit. a) Find the vector-valued function describing the motion b) Find the max height c) How long was the projectile in the air d) Find the range
The distance s(in m) above the ground for a projectile fired vertically upward with a velocity...
The distance s(in m) above the ground for a projectile fired vertically upward with a velocity of 4(a) m/s as a function of time t(in s) is given by s=4(a)t-4.(b)t2 a= 6 b=9 Find the answers to these questions 1. find t for v=0 2. find v for t=4 3. find v for t=5 what conclusions can you draw?
A bullet of mass m is fired from the initial ground velocity of magnitude v0 at...
A bullet of mass m is fired from the initial ground velocity of magnitude v0 at elevation angle θ0. (a) Express her momentum relative to the location of the shot as a function of time. (b) How fast does the momentum change? (c) Calculate the size vector r × F directly and compare it with the result of problem (b). Why both results are identical
If a projectile is fired with an initial velocity v0 meters per second at an angle...
If a projectile is fired with an initial velocity v0 meters per second at an angle α above the horizontal and air resistance is assumed to be negligible, then its position after t seconds is given by the parametric equations x=(v0 cos α)t     &     y=(v0 sin α) t-1/2gt2   Suppose α=30o and v0=500 m/s (a) At what time t does the projectile hit the ground? (b) How far does the projectile travel from the time it is fired until the time...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT