Question

In: Physics

A spherical drop of water carrying a charge of 10 pC has a potential of 515...

A spherical drop of water carrying a charge of 10 pC has a potential of 515 V at its surface (with V = 0 at infinity).

(a) What is the radius of the drop?

_1.75e-4__m

(b) If two such drops of the same charge and radius combine to form a single spherical drop, what is the potential at the surface of the new drop?

________V

show all work

Solutions

Expert Solution


Related Solutions

A metal sphere carrying an evenly distributed charge will have spherical equipotential surfaces surrounding it. Suppose...
A metal sphere carrying an evenly distributed charge will have spherical equipotential surfaces surrounding it. Suppose the sphere❝s radius is 52.5cm and it carries a total charge of +1.45μC . A) Calculate the potential of the sphere❝s surface.(with the appropriate) B) You want to draw equipotential surfaces at intervals of 500 V outside the sphere❝s surface. Calculate the distance between the first and the second equipotential surfaces, and between the 20th and 21st equipotential surfaces.
A spherical ball of charge has radius R and total charge Q. The electric field strength...
A spherical ball of charge has radius R and total charge Q. The electric field strength inside the ball (r?R) is E(r)= Emax=(r4/R4) A) What is Emax in terms of Q and R? Express your answer in terms of the variables Q, R, and appropriate constants. B) Find an expression for the volume charge density ?(r) inside the ball as a function of r. Express your answer in terms of the variables Q, r, R, and appropriate constants.
A spherical rain drop has a radius of 0.403 cm. It falls from a high cloud....
A spherical rain drop has a radius of 0.403 cm. It falls from a high cloud. The density of water is 1000 kg/m3. The density of air at that location is 1.21 kg/m3. Determine the magnitude of the terminal velocity of the rain drop (in m/s)
Charge q = + 15 nC is uniformly distributed on a spherical shell that has a...
Charge q = + 15 nC is uniformly distributed on a spherical shell that has a radius of 120 mm. 1. What is the magnitude of the electric field just outside the shell? (Express your answer with the appropriate units.) 2. What is the magnitude of the electric field just inside the shell? (Express your answer with the appropriate units.) 3. What is the direction of the electric field just outside and just inside the shell? a. radially inward just...
A spherical charge distribution of radius R has a charge Q distributed uniformly over its volume....
A spherical charge distribution of radius R has a charge Q distributed uniformly over its volume. Find the magnitude of the electric field E(r) and the electric potential V (r) for all r.
1. A bacterium has 1.8 × 1016 protons and a net charge of 9.4 pC. If...
1. A bacterium has 1.8 × 1016 protons and a net charge of 9.4 pC. If you paired them up, what fraction of the protons would have no electrons? 2. Common transparent adhesive tape becomes charged when pulled from a dispenser. If one piece is placed above another, the repulsive force can be great enough to support the top piece’s weight. Assuming equal point charges as an approximation, calculate the magnitude of each charge, in coulombs, if the electrostatic force...
A small spherical insulator of mass 5.49 × 10-2 kg and charge +0.600 μC is hung...
A small spherical insulator of mass 5.49 × 10-2 kg and charge +0.600 μC is hung by a thin wire of negligible mass. A charge of -0.900 μC is held 0.150 m away from the sphere and directly to the right of it, so the wire makes an angle with the vertical (see the drawing). Find (a) the angle and (b) the tension in the wire.
A spherical shell of radius a has a uniform surface charge density σ and rotates with...
A spherical shell of radius a has a uniform surface charge density σ and rotates with a constant angular velocity ω in relation to an axis that passes through its center. In this situation, determine the magnetic dipole moment μ of the spherical shell.
A spherical conductor has a radius of 14 cm and a charge of 26 micro columns....
A spherical conductor has a radius of 14 cm and a charge of 26 micro columns. Calculate the electric field (vector) and the electrical potential at a). R=10 cm from center b). R= 20 cm fromcenter c). R=14 cm center Please show all of your work!
A spherical conductor has a radius of 14.0 cm and a charge of 32.0 µC. Calculate...
A spherical conductor has a radius of 14.0 cm and a charge of 32.0 µC. Calculate the electric field and the electric potential at the following distances from the center. a) r =8.0 cm electric field: MN/C electric potential: MV b) r = 36.0 cm electric field: MN/C electric potential: MV c) r = 14.0 cm electric field: MN/C electric potential: MV
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT