Question

In: Advanced Math

The motion of a​ mass-spring system with damping is governed by y''(t) + by'(t) + 64...

The motion of a​ mass-spring system with damping is governed by y''(t) + by'(t) + 64 y(t) = 0; y(0) = 3, and y'(0) = 0.

Find the equation of motion for b = 0,14,16, and 20.

.

Solutions

Expert Solution


Related Solutions

Suppose that the mass in a mass-spring-dashpot system with m = 10, the damping constant c...
Suppose that the mass in a mass-spring-dashpot system with m = 10, the damping constant c = 9, and the spring constant k = 2 is set in motion with x(0) = -1/2 and x'(0) = -1/4. (a) Find the position function x(t). (b) Determine whether the mass passes through its equilibrium position. Sketch the graph of x(t).
Consider an mass-spring system with the following IVP for its disagreement y (t) at time t...
Consider an mass-spring system with the following IVP for its disagreement y (t) at time t greater than or equal to 0. You may assume it is underdamped. y" + y' + 5y = 0 , y (0) = -2 , y '(0) = -1 (a) Convert this to a DE system IVP in displacement y and velocity v. (b) Without using technology or solving the second order DE, make a rough sketch of the system solution on a phase...
1) Sinusoidal Motion Properties in Spring Mass System- A 200g mass hangs from vibrating spring at...
1) Sinusoidal Motion Properties in Spring Mass System- A 200g mass hangs from vibrating spring at lowest point of 3cm above table and at it's highest point at 12cm above table. It's oscillation period is 4seconds. Determine the following: a. The spring constant in terms of T (period) b. The maximum velocity magnitude and maximum acceleration magnitude c. The velocity magnitude at 10cm above table d. The vertical position, velocity magnitude and acceleration magnitude at 5 seconds
How is the motion of the mass on the spring similar to the motion of the...
How is the motion of the mass on the spring similar to the motion of the bob? How is it different? Then, why does the period of a pendulum not depend on mass but it does for the spring? Explain carefully. Simple harmonic motion is used to describe physics most complex theories. How could something so simple describe the most complex
A mass on a spring undergoes simple harmonic motion. At t = 0 its displacement is...
A mass on a spring undergoes simple harmonic motion. At t = 0 its displacement is 1m and its velocity is 1m/s towards the equilibrium position. What single piece of information allows you to determine frequency and amplitude? A. mass B. spring constant (k) C. kinetic energy at t = 0 D. acceleration at t = 0 E. force at t = 0
A spring with a mass of 1 kg has damping constant 10 kg/s and a spring...
A spring with a mass of 1 kg has damping constant 10 kg/s and a spring constant 41 kg/s2 . If the spring begins at equilibrium position and is given a velocity of 2 m/s, find the position of the mass at any time t. Is this overdamping, critical damping or underdamping?
A spring with a mass of 1 kg has damping constant 10 kg/s and a spring...
A spring with a mass of 1 kg has damping constant 10 kg/s and a spring constant 41 kg/s2 . If the spring begins at equilibrium position and is given a velocity of 2 m/s, find the position of the mass at any time t. Is this overdamping, critical damping or underdamping?
The Equation of motion for the standard mass-spring-damper system is Mẍ + Bẋ + Kx =...
The Equation of motion for the standard mass-spring-damper system is Mẍ + Bẋ + Kx = f(t). Given the parameters {M = 2kg, B = 67.882 N-s/m, K = 400 N/m}, determine the free response of the system to initial conditions { x0 = -1m, v0 = 40 m/s}. To help verify the correctness of your answer, a plot of x(t) should go through the coordinates {t, x(t)} = {.015, -0.5141} and {t, x(t)} = 0.03, -0.2043}. Numerically simulate the...
The Equation of motion for the standard mass-spring-damper system is Mẍ + Bẋ + Kx =...
The Equation of motion for the standard mass-spring-damper system is Mẍ + Bẋ + Kx = f(t). Given the parameters {M = 2kg, B = 67.882 N-s/m, K = 400 N/m}, determine the free response of the system to initial conditions { x0 = -1m, v0 = 40 m/s}. To help verify the correctness of your answer, a plot of x(t) should go through the coordinates {t, x(t)} = {.015, -0.5141} and {t, x(t)} = 0.03, -0.2043}. Numerically simulate the...
The Equation of motion for the standard mass-spring-damper system is Mẍ + Bẋ + Kx =...
The Equation of motion for the standard mass-spring-damper system is Mẍ + Bẋ + Kx = f(t). Given the parameters {M = 2kg, B = 67.882 N-s/m, K = 400 N/m}, determine the free response of the system to initial conditions { x0 = -1m, v0 = 40 m/s}. To help verify the correctness of your answer, a plot of x(t) should go through the coordinates {t, x(t)} = {.015, -0.5141} and {t, x(t)} = 0.03, -0.2043}. determine the steady-state...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT