In: Finance
Assume the CAPM holds and the market is efficient. Given the following information about the true market portfolio and stock S:
State Probability Return (Market) Return (S)
1 0.2 0.25 0.4
2 0.5 0.1 -0.085
3 0.3 -0.05 0.12
a. | |||||||||
The statement is false as the data given is used to calculate expected return for market and for stock S. Beta cannot be calculated with the given data. | |||||||||
b. | |||||||||
Calculation of expected rate of return on market portfolio is shown below | |||||||||
State | Probability (a) | Market return (b) | Expected return (a*b) | ||||||
1 | 0.2 | 0.25 | 0.0500 | ||||||
2 | 0.5 | 0.1 | 0.0500 | ||||||
3 | 0.3 | -0.05 | -0.0150 | ||||||
0.0850 | |||||||||
Thus, expected rate of return on market portfolio is 8.50%. | |||||||||
Calculation of expected rate of return on stock S is shown below | |||||||||
State | Probability (a) | Stock return (b) | Expected return (a*b) | ||||||
1 | 0.2 | 0.4 | 0.0800 | ||||||
2 | 0.5 | -0.085 | -0.0425 | ||||||
3 | 0.3 | 0.12 | 0.0360 | ||||||
0.0735 | |||||||||
Thus, expected rate of return on stock S is 7.35%. | |||||||||
c. | |||||||||
It has been given that CAPM holds and market is efficient and thus using the CAPM model and expected return calculated above we calculate risk free rate | |||||||||
Calculation of expected return on stock using CAPM model | |||||||||
Expected return on stock | Risk free rate + Beta*(Market return - Risk free rate) | ||||||||
0.0735 | Risk free rate + 0.70*(0.0850-risk free rate) | ||||||||
0.0735 | Risk free rate + 0.0595-0.70risk free rate | ||||||||
0.0735-0.0595 | 0.30risk free rate | ||||||||
0.014 | 0.30risk free rate | ||||||||
Risk free rate | 0.014/0.30 | ||||||||
Risk free rate | 4.67% | ||||||||
Thus, risk free rate of return is 4.67%. | |||||||||