In: Finance
Non-constant growth model:
Do=$2.00 required return on equity= 5%
g= 9% n=1,2
g=7% n=3,4
g=3% n=5 and thereafter
No spreadsheet, worked out
Solution:
The Non constant growth model is used to calculate the price of a share.
The current price of a share of a company using the Non constant growth model is calculated as follows :
The Current price of a share = Present value of dividends + Present value of share at year n
Thus the current price of the share with respect to the details given in the question is calculated using the formula
= [ D1 * ( 1 / ( 1 + r)1 ) ] + [ D2 * ( 1 / ( 1 + r)2 ) ] + [ D3 * ( 1 / ( 1 + r)3) ] + [ D4 * ( 1 / ( 1 + r)4 ) ] + [ D5 * ( 1 / ( 1 + r)5 ) ] + [ P5 * ( 1 / ( 1 + r)5 ) ]
Calculation of Dividend per share Years 1 to 5 :
As per the information given in the question we have
D0 = $ 2.00 ; g1 = 9 % ; g2 = 9 % ; g3 = 7 % ; g4 = 7 % ; g5 = 3 % ;
Thus the Dividend per year can be calculated as follows :
D1 = D0 * ( 1 + g1 ) = $ 2 * ( 1 + 0.09 ) = $ 2 * 1.09 = $ 2.18
D2 = D1 * ( 1 + g2 ) = $ 2.18 * ( 1 + 0.09 ) = $ 2.18 * 1.09 = $ 2.3762
D3 = D2 * ( 1 + g3 ) = $ 2.3762 * ( 1 + 0.07 ) = $ 2.3762 * 1.07 = $ 2.5425
D4 = D3 * ( 1 + g4 ) = $ 2.5425 * ( 1 + 0.07 ) = $ 2.5425 * 1.07 = $ 2.7205
D5 = D4 * ( 1 + g5 ) = $ 2.7205 * ( 1 + 0.03 ) = $ 2.7205 * 1.03 = $ 2.8021
Thus we have D1 = $ 2.1800 ; D2 = $ 2.3762 ; D3 = $ 2.5425 ; D4 = $ 2.7205 ; D5 = $ 2.8021 ;
Calculation of price of share at year 5:
Price of the share at year 5 where the firm expects a constant growth rate of 3 %
The formula for calculating the price of the share at year 5
P5 = [ D5 * ( 1 + g ) ] / ( Ke – g )
We know that
D5 = $ 2.8021 ; g = 3 % = 0.03 ; Ke = 5 % = 0.05 ;
P5 = [ $ 2.8021 * ( 1 + 0.03 ) ] / ( 0.05 – 0.03 )
= ( $ 2.8021 * 1.03 ) / ( 0.05 - 0.03 )
= ( $ 2.8021 * 1.03 ) / 0.02
= $ 2.886163 / 0.02
= $ 144.308150
Thus the price of the share at year 5 = $ 144.308150
= $ 144.3082
Calculation of price of share today :
Thus the current price of the share = [ D1 * ( 1 / ( 1 + r)1 ) ] + [ D2 * ( 1 / ( 1 + r)2 ) ] + [ D3 * ( 1 / ( 1 + r)3) ] + [ D4 * ( 1 / ( 1 + r)4 ) ] + [ D5 * ( 1 / ( 1 + r)5) ] + [ P5* ( 1 / ( 1 + r)5 ) ]
Applying the available information in the formula we have the price of the share as follows :
= [ $ 2.1800 * ( 1 / 1.05 )1 ] + [ $ 2.3762 * ( 1 / 1.05 )2 ] + [ $ 2.5425 * ( 1 / 1.05 )3 ] + [ $ 2.7205 * ( 1 / 1.05 )4 ] + [ $ 2.8021 * ( 1 / 1.05 )5 ] + [ 144.3082 * ( 1 / 1.02 )5 ]
= [ $ 2.1800 * 0.952381 ] + [ $ 2.3762 * 0.907029 ] + [ $ 2.5425 * 0.863838 ] + [ $ 2.7205 * 0.822702 ] + [ $ 2.8021 * 0.783526] + [ $ 144.3082 * 0.783526 ]
= $ 2.076191 + $ 2.155282 + $ 2.196308 + $ 2.238161 + $ 2.195518 + $ 113.069188
= $ 123.930648
= $ 123.93 ( when rounded off to two decimal places )
Thus the price of the share / stock as per the Non constant growth model = $ 123.93