Question

In: Chemistry

Using the following reduction potentials: I2(s) + 2e- <---> 2I-(aq) E0 = 0.535 V I2 (aq)...

Using the following reduction potentials:

I2(s) + 2e- <---> 2I-(aq) E0 = 0.535 V

I2 (aq) +2e- <---> 2I-(aq) E0 = 0.620 V

I3-(aq) + 2e- <---> 3I-(aq) E0 = 0.535 V

a) Calculate the equilibrium constant for I2(aq) + I-(aq) <---> I3-(aq)

b) Calculate the equilibrium constant for I2(s) + I-(aq) <---> I3-(aq)

c) Calculate the solubility (g/L) of I2(s) in water.

Solutions

Expert Solution

Standard potential (E0) and equilibrium constant (K) are related by relation,

E0 = (0.059/n) ln(K) ……………….( After substituting R, T, F values)

Let K1, K2, K3 be the equilibrium constants for following 3 transformations respectively

For these reductions Standard EMF (E0) are given, using which let us find out respective equilibrium constant for each of them,

a) I2(s) + 2e- <---> 2I-(aq.)

K1 = [I-]2 ……………….(1) ………..(I2 (s) do not appear in rate expression)

[I-] = (K1)1/2 ……….(Taking sq. root of both sides) …………….(1a)

E0 = 0.535 V, n = 2,

0.535 = (0.059 / 2) ln(K1)

0.535 = 0.0295 ln(K1)

ln(K1) = 0.535 / 0.0295

ln(K1) = 18.14

K1 = e18.14

K1 = 7.55 x 107……. (2)

=================

b) I2 (aq) +2e- <---> 2I-(aq)

K2 = [I-]2 / [I2] ……….. (3)

K2 = K1 / [I2] ……..(by eq. 1) …………..(3a)

E0 = 0.620 V, n = 2

0.620 = 0.0295 ln(K2)

ln(K2) = 0.620 / 0.0295

ln(K2) = 21.02

K2 = e21.02

K2 = 1.35 x 109 ……….. (4)

=====================

c) I3-(aq) + 2e- <---> 3I-(aq)

K3 = [I-]3 / [I3-] …… (5)

K3 = (K1)3/2 / [I3-] ……………...(By eq. 1a) …………..(5a)

E0 = 0.535 V , n = 2,

0.535 = 0.0295 ln(K3)

ln(K3) = 0.535 / 0.0295

ln(K3) = 18.14

K3 = 7.55 x 107……………. (6)

=========================

a)Let K4 be the equilibrium for the transformation,

I2(aq) + I-(aq) <---> I3-(aq)

K4 = [I3-] / [I2][I-]

[I3-] = (K1)3/2/ (K3) ………… (by rearranging eq.5a)

[I2] = K1/K2 ………….(by rearranging eq.3a)

[I-] = (K1)1/2…….(by eq. 1a)

Put all these value in expression for K4,

K4 = [(K1)3/2/ (K3)] / [K1/K2][ (K1)1/2]

K4 = [(K1)3/2/ (K3)] / [(K1)3/2/K2]

K4 = (1/K3) / (1/K2) ………………[(K2)3/2 cancelled out]

K4 = K2 / K3

K4 = 1.35 x 109/ 7.55 x 107

K4 = 17.88

===================================================

b) Calculate the equilibrium constant for I2(s) + I-(aq) <---> I3-(aq)

Let K5 be the equilibrium constant for this transformation,

K5 =[I3-] / [I-]

[I3-] = (K1)3/2/ (K3) ………… (by rearranging eq.5a)

[I-] = (K1)1/2…….(by eq. 1a)

Let us put these value in expression for K5,

K5 = [(K1)3/2/ (K3) ] / (K1)1/2

K5 = (K1)2 / K3

K5 = (7.55 x 107 )2 /(7.55 x 107)

K5 = 7.55 x 107.

=======================================

c) Calculate the solubility (g/L) of I2(s) in water

Let ‘S’ be the solubility of I2 in mole/L in water,

I2(s) -------- > 2I- (aq.)

Solubility of I2 is ‘S’ mole/L

Hence, [I-] = (2S) mole/L

Ksp = [I-]2 = (2S)­2

Ksp = K1 = 4S2

7.55 x 107 = 4S2

S2 = 7.55 x 107 /4

S2 = 1.8875 x 107

Taking square roots of both sides,

S = 4.345 x 103 mole/L

To above value if we multiply by molar mass of I2 we will have solubility in g/L

Molar mass of I2 = 253.809 g

Hence,

S = 4.345 x 103 x 253.809 g/L

S = 1.103 x 106 g/L

Solubility of I2(s) in water is 1.103 x 106 g/L.

==============xxxxxxxxxxxxxx=====================

Note : I used many times laws of exponent here. If you find it difficult to understand please let me know.


Related Solutions

Given the following standard reduction potentials: Pb2+ (aq) +2e- ---> Pb (s) E= -.126V PbSO4(s) +...
Given the following standard reduction potentials: Pb2+ (aq) +2e- ---> Pb (s) E= -.126V PbSO4(s) + 2e- ---> Pb(s) + SO42- (aq) E= -.356V Determine the Ksp for PbSO4(s) at 25 degrees C
Refer to this table of reduction potentials to answer the questions. Reduction half-reaction Potential (V) F2(g)+2e−→2F−(aq)...
Refer to this table of reduction potentials to answer the questions. Reduction half-reaction Potential (V) F2(g)+2e−→2F−(aq) +2.87 O2(g)+4H+(aq)+4e−→2H2O(l) +1.23 Br2(l)+2e−→2Br−(aq) +1.07 Ag++e−→Ag(s) +0.80 2H2O(l)+2e−→H2(g)+2OH−(aq) −0.83 Na+(aq)+e−→Na(s) −2.71 What is produced at each electrode in the electrolysis of an aqueous solution of both NaBr and AgF? H2(g), Ag(s), Na(s), O2(g), Br(l), F2(g) sort to respective designation below Anode, Cathode, Not produced
Refer to this table of reduction potentials to answer the questions. Reduction half-reaction Potential (V) F2(g)+2e−→2F−(aq)...
Refer to this table of reduction potentials to answer the questions. Reduction half-reaction Potential (V) F2(g)+2e−→2F−(aq) +2.87 O2(g)+4H+(aq)+4e−→2H2O(l) +1.23 Br2(l)+2e−→2Br−(aq) +1.07 Ag++e−→Ag(s) +0.80 2H2O(l)+2e−→H2(g)+2OH−(aq) −0.83 Na+(aq)+e−→Na(s) −2.71 What is produced at each electrode in the electrolysis of an aqueous solution of both NaBr and AgF? Drag the appropriate items to their respective bins. Na(s) H2(g) F2(g) O2(g) Ag(s) Br2(l)
Reduction Half Reaction E (V) Ag2MoO4(s) + 2e- ---> 2 Ag(s) + MoO42-(aq) 0.4573 V Ag+(aq)...
Reduction Half Reaction E (V) Ag2MoO4(s) + 2e- ---> 2 Ag(s) + MoO42-(aq) 0.4573 V Ag+(aq) + e- ---> Ag(s) 0.7996 V a.) Calculate the mass in grams of Ag2MoO4(s) that will dissolve in 2.0 L of water. b.) Calcilate the cell potential of: Ag(s) | Ag2MoO4(s) | MoO42-(aq) (0.010 M) || Ag+(aq) (0.010M) | Ag (s)
Consider the following reduction potentials: Mg2+ + 2e- → Mg E° = -2.37 V V2+ +...
Consider the following reduction potentials: Mg2+ + 2e- → Mg E° = -2.37 V V2+ + 2e- → V E° = -1.18 V Cu2+ + e- → Cu+ E° = +0.15 V Which one of the following reactions will proceed spontaneously? • Mg2+ + V → V2+ + Mg • Mg2+ + 2Cu+ → 2Cu2+ + Mg • V2+ + 2Cu+ → V + 2Cu2+ • V + 2Cu2+ → V2+ + 2Cu+
Reduction half-reaction E∘ (V) Ag+(aq)+e−→Ag(s) 0.80 Cu2+(aq)+2e−→Cu(s) 0.34 Sn4+(aq)+4e−→Sn(s) 0.15 2H+(aq)+2e−→H2(g) 0 Ni2+(aq)+2e−→Ni(s) −0.26 Fe2+(aq)+2e−→Fe(s) −0.45...
Reduction half-reaction E∘ (V) Ag+(aq)+e−→Ag(s) 0.80 Cu2+(aq)+2e−→Cu(s) 0.34 Sn4+(aq)+4e−→Sn(s) 0.15 2H+(aq)+2e−→H2(g) 0 Ni2+(aq)+2e−→Ni(s) −0.26 Fe2+(aq)+2e−→Fe(s) −0.45 Zn2+(aq)+2e−→Zn(s) −0.76 Al3+(aq)+3e−→Al(s) −1.66 Mg2+(aq)+2e−→Mg(s) −2.37 1) Use the table of standard reduction potentials given above to calculate the equilibrium constant at standard temperature (25 ∘C) for the following reaction: Fe(s)+Ni2+(aq)→Fe2+(aq)+Ni(s) 2) Calculate the standard cell potential (E∘) for the reaction X(s)+Y+(aq)→X+(aq)+Y(s) if K = 3.80×10−4. Express your answer to three significant figures and include the appropriate units.
Consider the following reaction: Br2(l) + 2I-(aq) ---> 2Br-(aq) + I2(s) a.Calculate ΔGorxn b.Calculate K
Consider the following reaction: Br2(l) + 2I-(aq) ---> 2Br-(aq) + I2(s) a.Calculate ΔGorxn b.Calculate K
Explain why the sum of the potentials for the half-reactions Sn2+(aq) + 2e− → Sn(s) and...
Explain why the sum of the potentials for the half-reactions Sn2+(aq) + 2e− → Sn(s) and Sn4+(aq) + 2e− → Sn2+(aq) does not equal the potential for the reaction Sn4+(aq) + 4e−→ Sn(s). What is the net cell potential? Compare the values of ΔG° for the sum of the potentials and the actual net cell potential.
Half-reaction E° (V) Hg2+(aq) + 2e- -----> Hg(l) 0.855V Ni2+(aq) + 2e- -----> Ni(s) -0.250V Zn2+(aq)...
Half-reaction E° (V) Hg2+(aq) + 2e- -----> Hg(l) 0.855V Ni2+(aq) + 2e- -----> Ni(s) -0.250V Zn2+(aq) + 2e- ----->  Zn(s) -0.763V (1) The weakest oxidizing agent is: ___   enter formula (2) The strongest reducing agent is: ___ (3) The strongest oxidizing agent is:___ (4) The weakest reducing agent is: ___ (5) Will Zn(s) reduce Hg2+(aq) to Hg(l)? _____(yes)(no) (6) Which species can be oxidized by Ni2+(aq)? ___ If none, leave box blank.
Half-reaction E° (V) Br2(l) + 2e- 2Br-(aq) 1.080V Sn2+(aq) + 2e- Sn(s) -0.140V Al3+(aq) + 3e-...
Half-reaction E° (V) Br2(l) + 2e- 2Br-(aq) 1.080V Sn2+(aq) + 2e- Sn(s) -0.140V Al3+(aq) + 3e- Al(s) -1.660V (1) The weakest oxidizing agent is: enter formula (2) The strongest reducing agent is: (3) The strongest oxidizing agent is: (4) The weakest reducing agent is: (5) Will Al(s) reduce Br2(l) to Br-(aq)? (6) Which species can be oxidized by Sn2+(aq)? If none, leave box blank.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT