In: Chemistry
Using the following reduction potentials:
I2(s) + 2e- <---> 2I-(aq) E0 = 0.535 V
I2 (aq) +2e- <---> 2I-(aq) E0 = 0.620 V
I3-(aq) + 2e- <---> 3I-(aq) E0 = 0.535 V
a) Calculate the equilibrium constant for I2(aq) + I-(aq) <---> I3-(aq)
b) Calculate the equilibrium constant for I2(s) + I-(aq) <---> I3-(aq)
c) Calculate the solubility (g/L) of I2(s) in water.
Standard potential (E0) and equilibrium constant (K) are related by relation,
E0 = (0.059/n) ln(K) ……………….( After substituting R, T, F values)
Let K1, K2, K3 be the equilibrium constants for following 3 transformations respectively
For these reductions Standard EMF (E0) are given, using which let us find out respective equilibrium constant for each of them,
a) I2(s) + 2e- <---> 2I-(aq.)
K1 = [I-]2 ……………….(1) ………..(I2 (s) do not appear in rate expression)
[I-] = (K1)1/2 ……….(Taking sq. root of both sides) …………….(1a)
E0 = 0.535 V, n = 2,
0.535 = (0.059 / 2) ln(K1)
0.535 = 0.0295 ln(K1)
ln(K1) = 0.535 / 0.0295
ln(K1) = 18.14
K1 = e18.14
K1 = 7.55 x 107 ………. (2)
=================
b) I2 (aq) +2e- <---> 2I-(aq)
K2 = [I-]2 / [I2] ……….. (3)
K2 = K1 / [I2] ……..(by eq. 1) …………..(3a)
E0 = 0.620 V, n = 2
0.620 = 0.0295 ln(K2)
ln(K2) = 0.620 / 0.0295
ln(K2) = 21.02
K2 = e21.02
K2 = 1.35 x 109 ……….. (4)
=====================
c) I3-(aq) + 2e- <---> 3I-(aq)
K3 = [I-]3 / [I3-] …… (5)
K3 = (K1)3/2 / [I3-] ……………...(By eq. 1a) …………..(5a)
E0 = 0.535 V , n = 2,
0.535 = 0.0295 ln(K3)
ln(K3) = 0.535 / 0.0295
ln(K3) = 18.14
K3 = 7.55 x 107……………. (6)
=========================
a)Let K4 be the equilibrium for the transformation,
I2(aq) + I-(aq) <---> I3-(aq)
K4 = [I3-] / [I2][I-]
[I3-] = (K1)3/2/ (K3) ………… (by rearranging eq.5a)
[I2] = K1/K2 ………….(by rearranging eq.3a)
[I-] = (K1)1/2…….(by eq. 1a)
Put all these value in expression for K4,
K4 = [(K1)3/2/ (K3)] / [K1/K2][ (K1)1/2]
K4 = [(K1)3/2/ (K3)] / [(K1)3/2/K2]
K4 = (1/K3) / (1/K2) ………………[(K2)3/2 cancelled out]
K4 = K2 / K3
K4 = 1.35 x 109/ 7.55 x 107
K4 = 17.88
===================================================
b) Calculate the equilibrium constant for I2(s) + I-(aq) <---> I3-(aq)
Let K5 be the equilibrium constant for this transformation,
K5 =[I3-] / [I-]
[I3-] = (K1)3/2/ (K3) ………… (by rearranging eq.5a)
[I-] = (K1)1/2…….(by eq. 1a)
Let us put these value in expression for K5,
K5 = [(K1)3/2/ (K3) ] / (K1)1/2
K5 = (K1)2 / K3
K5 = (7.55 x 107 )2 /(7.55 x 107)
K5 = 7.55 x 107.
=======================================
c) Calculate the solubility (g/L) of I2(s) in water
Let ‘S’ be the solubility of I2 in mole/L in water,
I2(s) -------- > 2I- (aq.)
Solubility of I2 is ‘S’ mole/L
Hence, [I-] = (2S) mole/L
Ksp = [I-]2 = (2S)2
Ksp = K1 = 4S2
7.55 x 107 = 4S2
S2 = 7.55 x 107 /4
S2 = 1.8875 x 107
Taking square roots of both sides,
S = 4.345 x 103 mole/L
To above value if we multiply by molar mass of I2 we will have solubility in g/L
Molar mass of I2 = 253.809 g
Hence,
S = 4.345 x 103 x 253.809 g/L
S = 1.103 x 106 g/L
Solubility of I2(s) in water is 1.103 x 106 g/L.
==============xxxxxxxxxxxxxx=====================
Note : I used many times laws of exponent here. If you find it difficult to understand please let me know.