In: Finance
You would like to buy a house that costs $350,000. You have $50,000 in cash that you can put down on the house, but you need to borrow the rest of the purchase price. The bank is offering a 30-year mortgage that requires annual payments and has an interest rate of 7% per year. You can afford to pay only $23,500 per year. The bank agrees to allow you to pay this amount each year, yet still borrow $300,000. At the end of the mortgage (in 30 years), you must make a balloon payment; that is, you must repay the remaining balance on the mortgage. How much will this balloon payment be?
The PV of the annuity is (Round to the nearest dollar.)
The balloon payment is (Round to the nearest dollar.)
$nothing .
(Round to the nearest dollar.)
Loan Taken = $ 300,000
Yearly Payment = $ 23,500
Year | Opening Bal | Instalment | Int | Principal repay | Closing Bal |
1 | $ 3,00,000.00 | $ 23,500.00 | $ 21,000.00 | $ 2,500.00 | $ 2,97,500.00 |
2 | $ 2,97,500.00 | $ 23,500.00 | $ 20,825.00 | $ 2,675.00 | $ 2,94,825.00 |
3 | $ 2,94,825.00 | $ 23,500.00 | $ 20,637.75 | $ 2,862.25 | $ 2,91,962.75 |
4 | $ 2,91,962.75 | $ 23,500.00 | $ 20,437.39 | $ 3,062.61 | $ 2,88,900.14 |
5 | $ 2,88,900.14 | $ 23,500.00 | $ 20,223.01 | $ 3,276.99 | $ 2,85,623.15 |
6 | $ 2,85,623.15 | $ 23,500.00 | $ 19,993.62 | $ 3,506.38 | $ 2,82,116.77 |
7 | $ 2,82,116.77 | $ 23,500.00 | $ 19,748.17 | $ 3,751.83 | $ 2,78,364.95 |
8 | $ 2,78,364.95 | $ 23,500.00 | $ 19,485.55 | $ 4,014.45 | $ 2,74,350.49 |
9 | $ 2,74,350.49 | $ 23,500.00 | $ 19,204.53 | $ 4,295.47 | $ 2,70,055.03 |
10 | $ 2,70,055.03 | $ 23,500.00 | $ 18,903.85 | $ 4,596.15 | $ 2,65,458.88 |
11 | $ 2,65,458.88 | $ 23,500.00 | $ 18,582.12 | $ 4,917.88 | $ 2,60,541.00 |
12 | $ 2,60,541.00 | $ 23,500.00 | $ 18,237.87 | $ 5,262.13 | $ 2,55,278.87 |
13 | $ 2,55,278.87 | $ 23,500.00 | $ 17,869.52 | $ 5,630.48 | $ 2,49,648.39 |
14 | $ 2,49,648.39 | $ 23,500.00 | $ 17,475.39 | $ 6,024.61 | $ 2,43,623.78 |
15 | $ 2,43,623.78 | $ 23,500.00 | $ 17,053.66 | $ 6,446.34 | $ 2,37,177.44 |
16 | $ 2,37,177.44 | $ 23,500.00 | $ 16,602.42 | $ 6,897.58 | $ 2,30,279.87 |
17 | $ 2,30,279.87 | $ 23,500.00 | $ 16,119.59 | $ 7,380.41 | $ 2,22,899.46 |
18 | $ 2,22,899.46 | $ 23,500.00 | $ 15,602.96 | $ 7,897.04 | $ 2,15,002.42 |
19 | $ 2,15,002.42 | $ 23,500.00 | $ 15,050.17 | $ 8,449.83 | $ 2,06,552.59 |
20 | $ 2,06,552.59 | $ 23,500.00 | $ 14,458.68 | $ 9,041.32 | $ 1,97,511.27 |
21 | $ 1,97,511.27 | $ 23,500.00 | $ 13,825.79 | $ 9,674.21 | $ 1,87,837.06 |
22 | $ 1,87,837.06 | $ 23,500.00 | $ 13,148.59 | $ 10,351.41 | $ 1,77,485.65 |
23 | $ 1,77,485.65 | $ 23,500.00 | $ 12,424.00 | $ 11,076.00 | $ 1,66,409.65 |
24 | $ 1,66,409.65 | $ 23,500.00 | $ 11,648.68 | $ 11,851.32 | $ 1,54,558.32 |
25 | $ 1,54,558.32 | $ 23,500.00 | $ 10,819.08 | $ 12,680.92 | $ 1,41,877.41 |
26 | $ 1,41,877.41 | $ 23,500.00 | $ 9,931.42 | $ 13,568.58 | $ 1,28,308.82 |
27 | $ 1,28,308.82 | $ 23,500.00 | $ 8,981.62 | $ 14,518.38 | $ 1,13,790.44 |
28 | $ 1,13,790.44 | $ 23,500.00 | $ 7,965.33 | $ 15,534.67 | $ 98,255.77 |
29 | $ 98,255.77 | $ 23,500.00 | $ 6,877.90 | $ 16,622.10 | $ 81,633.68 |
30 | $ 81,633.68 | $ 23,500.00 | $ 5,714.36 | $ 17,785.64 | $ 63,848.03 |
PV of ANNuity = CF * PVAF
= $ 23,500 * PVAF(7%,30)
= 23500 * 12.4090
= 291612.5
Ballon Paymnet = 63843.03 ( Lfet over balance in Amortization Table).