Question

In: Physics

Steam at 100°C is added to ice at 0°C. Find the temperature when the mass of...

  1. Steam at 100°C is added to ice at 0°C. Find the temperature when the mass of steam is 10 g and the mass of ice is 50 g. The specific heat of water is 4186 J/kg°C, its latent heat of fusion is 3.33x105 J/kg and its heat of vaporization is 2.26x106 J/kg.

Solutions

Expert Solution

Steam converted into water by losing heat and ice absorb that heat and covert into water, after, that water will be heated to temperature T.

Mass of steam, m = 10 g

Mass of ice, M = 50 g

Heat lost = heat lost by steam = latent heat of vaporization of steam + m*(specific heat of water)*(change in temperature)

Heat lost = m*(heat of vaporization) + m*(specific heat of water)*(change in temperature)

Heat lost = 10*(2.26x106) + 10*(4186)*(373 -T) ........................................................................1

Heat gain = heat gain by ice + heat gain by water (ice + steam) to reach temperature T

Heat gain = M*heat of fusion of ice + (M + m)*(specific heat of water)*(change in temperature)

Heat gain = 50*(3.33x105) + 60*(4186)*(T - 273) .....................................................................2

Heat lost = Heat gain, by consevation of energy

So by equation 1 and 2 we get, T = 307.59 kelvin = 34.59 deg


Related Solutions

Steam at 100°C is added to ice at 0°C. (a) Find the amount of ice melted...
Steam at 100°C is added to ice at 0°C. (a) Find the amount of ice melted and the final temperature when the mass of steam is 13.0 g and the mass of ice is 45.0 g.  g  °C (b) Repeat this calculation, when the mass of steam as 1.30 g and the mass of ice is 45.0 g.  g  °C
Steam at 100°C is added to ice at 0°C. (a) Find the amount of ice melted...
Steam at 100°C is added to ice at 0°C. (a) Find the amount of ice melted and the final temperature when the mass of steam is 11 g and the mass of ice is 49 g. (b) Repeat with steam of mass 2.0 g and ice of mass 49 g.
Steam at 100°C is added to ice at 0°C. (a) Find the amount of ice melted...
Steam at 100°C is added to ice at 0°C. (a) Find the amount of ice melted and the final temperature when the mass of steam is 12 g and the mass of ice is 45 g. Answers in g and °C (b) Repeat with steam of mass 1.9 g and ice of mass 45 g. Answers in g and °C
Steam at 100°C is added to ice at 0°C. (a) Find the amount of ice melted...
Steam at 100°C is added to ice at 0°C. (a) Find the amount of ice melted and the final temperature when the mass of steam is 13 g and the mass of ice is 48 g.   g °C (b) Repeat with steam of mass 2.1 g and ice of mass 48 g. g °C
What mass of steam at 100∘C must be added to 1.80 kg of ice at 0∘C...
What mass of steam at 100∘C must be added to 1.80 kg of ice at 0∘C to yield liquid water at 20 ∘C? The heat of fusion for water is 333 kJ/kg , the specific heat is 4186 J/kg⋅C∘ , the heat of vaporization is 2260 kJ/kg .
What mass of steam at 100∘C must be added to 1.90 kg of ice at 0∘C...
What mass of steam at 100∘C must be added to 1.90 kg of ice at 0∘C to yield liquid water at 15 ∘C? The heat of fusion for water is 333 kJ/kg , the specific heat is 4186 J/kg⋅C∘ , the heat of vaporization is 2260 kJ/kg .
If 200 g of ice at 0°C and 50 g of steam at 100°C interact thermally...
If 200 g of ice at 0°C and 50 g of steam at 100°C interact thermally in a well-insulated container. The final state of the system will be; ( is loved it and got Tf= 64C ) ( so please choose an answer from the following multiple choices ) (a) A water steam mixture at 100°C (b) Water at a temperature between 0°C and 50°C (c) 0.089 kg (d) 0.12 kg (e) A ice-water mixture at 0°C
In a thermally isolated environment, you add ice at 0°C and steam at 100°C. (a) Determine...
In a thermally isolated environment, you add ice at 0°C and steam at 100°C. (a) Determine the amount of steam condensed (in g) AND the final temperature (in °C) when the mass of ice and steam added are respectively 84.0 g and 10.8 g. (b) Repeat this calculation, when the mass of ice and steam added are interchanged. (Enter the amount of steam condensed in g and the final temperature in °C.)
What mass of steam at 100°C must be mixed with 150 g of ice at its...
What mass of steam at 100°C must be mixed with 150 g of ice at its melting point, in a thermally insulated container, to produce liquid water at 50°C?
A sample of steam with a mass of 0.507 g and at a temperature of 100...
A sample of steam with a mass of 0.507 g and at a temperature of 100 ∘C condenses into an insulated container holding 4.45 g of water at 4.0 ∘C.( ΔH∘vap=40.7 kJ/mol, Cwater=4.18 J/g⋅∘C) Assuming that no heat is lost to the surroundings, what is the final temperature of the mixture?
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT