Question

In: Advanced Math

Let f be a continuous function on the closed interval [0,1] with a range also contained...

Let f be a continuous function on the closed interval [0,1] with a range also contained in [0,1]. Prove that f that there exists an x in [0,1] such that f(x)=x. Is the same explanation still valid if f is not continuous?

Solutions

Expert Solution

INTERMEDIATE VALUE THEOREM: Suppose that f : [a,b] |R be continuous such that f(a).f(b) < 0 . Then, there is an x in (a,b) such that f(x)=0.

f : [0,1] [0,1] is continuous.
If f(0)=0 or f(1)=1, we are done.
Assume therefore that f(0) 0 and f(1) 1.
Since f(x) is in [0,1] for all x in [0,1], hence f(0) > 0 and f(1) < 1.

Consider the function g : [0,1] [0,1] defined by, g(x)=f(x)-x for all x in [0,1].
Since f is continuous and the identity function i(x)=x is continuous, hence g is continuous.
Observe that:
g(0) = f(0) - 0 = f(0) > 0
g(1) = f(1) - 1 < 0 as f(1) < 1.
Thus, g(0) > 0 and g(1) < 0 which implies that g(0).g(1) < 0.
By the Intermediate Value Theorem, there exists an x in (0,1) such that g(x) = f(x)-x = 0 and hence, f(x)=x.


No. The claim is not true if f is not continuous. If f is not continuous, then f may not satisfy the Intermediate Value Property.
For example, consider the function f : [0,1] [0,1] defined by,
f(x) = { 1 if x is in [0,1/2]
0 if x is in (1/2,1]
Then, there is no x in [0,1] such that f(x)=x. The reason is simply that f is not continuous(because it is discontinuous at 1/2)


Related Solutions

let f be the function on [0,1] given by f(x) = 1 if x is different...
let f be the function on [0,1] given by f(x) = 1 if x is different of 1/2 and 2 if x is equal to 1/2 Prove that f is Riemann integrable and compute integral of f(x) dx from 0 to 1 Hint for each epsilon >0 find a partition P so that Up (f) - Lp (f) <= epsilon
Let f : R → R be a function. (a) Prove that f is continuous on...
Let f : R → R be a function. (a) Prove that f is continuous on R if and only if, for every open set U ⊆ R, the preimage f −1 (U) = {x ∈ R : f(x) ∈ U} is open. (b) Use part (a) to prove that if f is continuous on R, its zero set Z(f) = {x ∈ R : f(x) = 0} is closed.
Let f be a continuous function on [a, b] which is differentiable on (a,b). Then f...
Let f be a continuous function on [a, b] which is differentiable on (a,b). Then f is non-decreasing on [a,b] if and only if f′(x) ≥ 0 for all x ∈ (a,b), while if f is non-increasing on [a,b] if and only if f′(x) ≤ 0 for all x ∈ (a, b). can you please prove this theorem? thank you!
Let f be a function with domain the reals and range the reals. Assume that f...
Let f be a function with domain the reals and range the reals. Assume that f has a local minimum at each point x in its domain. (This means that, for each x ∈ R, there is an E = Ex > 0 such that, whenever | x−t |< E then f(x) ≤ f(t).) Do not assume that f is differentiable, or continuous, or anything nice like that. Prove that the image of f is countable. (Hint: When I solved...
Compact and analysis conception 1. Are all closed interval compact? for example [0,1]. are they closed...
Compact and analysis conception 1. Are all closed interval compact? for example [0,1]. are they closed and bounded? 2. If i can find the Maximum and Minimum, does that mean the set is closed and bounded?
Let f be a differentiable function on the interval [0, 2π] with derivative f' . Show...
Let f be a differentiable function on the interval [0, 2π] with derivative f' . Show that there exists a point c ∈ (0, 2π) such that cos(c)f(c) + sin(c)f'(c) = 2 sin(c).
a) Let S ⊂ R, assuming that f : S → R is a continuous function,...
a) Let S ⊂ R, assuming that f : S → R is a continuous function, if the image set {f(x); x ∈ S} is unbounded prove that S is unbounded. b) Let f : [0, 100] → R be a continuous function such that f(0) = f(2), f(98) = f(100) and the function g(x) := f(x+ 1)−f(x) is equal to zero in at most two points of the interval [0, 100]. Prove that (f(50) − f(49))(f(25) − f(24)) >...
a) State the definition that a function f(x) is continuous at x = a. b) Let...
a) State the definition that a function f(x) is continuous at x = a. b) Let f(x) = ax^2 + b if 0 < x ≤ 2 18/x+1 if x > 2 If f(1) = 3, determine the values of a and b for which f(x) is continuous for all x > 0.
Rolle's Theorem, "Let f be a continuous function on [a,b] that is differentiable on (a,b) and...
Rolle's Theorem, "Let f be a continuous function on [a,b] that is differentiable on (a,b) and such that f(a)=f(b). Then there exists at least one point c on (a,b) such that f'(c)=0." Rolle's Theorem requires three conditions be satisified. (a) What are these three conditions? (b) Find three functions that satisfy exactly two of these three conditions, but for which the conclusion of Rolle's theorem does not follow, i.e., there is no point c in (a,b) such that f'(c)=0. Each...
Recall that the set {0,1}∗ is the set of all finite-length binary strings. Let f:{0,1}∗→{0,1}∗ to...
Recall that the set {0,1}∗ is the set of all finite-length binary strings. Let f:{0,1}∗→{0,1}∗ to be f(x1x2…xk)=x2x3…xkx1. That is, f takes the first bit of a string x and moves it to the end of x, so for example a string 100becomes 001; if |x|≤1, then f(x)=x Also, suppose that g:{0,1}∗→{0,1}∗ is a function such that g(x1…xk)=0x1…xk (that is, gg puts an extra 0 in front of the given string, so for example g(100)=0100. Everywhere in this question we...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT