In: Statistics and Probability
The average college student goes through 500 disposable cups in a yeat. To raise environmental awareness, a student group at a large university volunteered to help count how many cups were used by students on their campus. A random sample of 50 student's results found that they used a mean of 476 cups with a standard deviation of 42 cups. At the 0.01 level of significance, is there sufficient evidence to conclude that the mean differs from 500? USE THE 5 STEP RESPONSE AS OUTLINED IN THE BOOK ON PAGE 413. use the z score method. (example 8-3)
Solution :
This is the two tailed test .
The null and alternative hypothesis is ,
H0 : = 500
Ha : 500
= 476
= 500
= 42
n = 50
Test statistic = z
= ( - ) / / n
= (476 - 500) / 42 / 50
= -4.04
Test statistic = -4.04
P(z < -4.04) = 0
P-value = 0 * 2 = 0
= 0.01
P-value <
Reject the null hypothesis .
There is sufficient evidence to conclude that the mean differs from 500 .