Question

In: Physics

A parallel plate capacitor has an area of A=200 cm^-2    and 0.50 cm plate distance....

A parallel plate capacitor has an area of A=200 cm^-2    and 0.50 cm plate distance. The capacitor is firstly connected to a power supply that has potential difference V0=30V    and after charged the power supply is disconnected. After then a sheet of insulating plastic material is inserted between the plates (completely filling the space between them). With the plastic material the potential difference decreases to 10 V while the charge on capacitor remains the constant. Find ;
a) the original (while filled air) capacitance C0 .

b) the stored charge Q

c) the capacitance C after the dielectric is inserted.

d) the dielectric constant of the dielectric.

e) the original electric field E0 between the plates.

f) The stored energy at the original capacitor.

Solutions

Expert Solution

PART A:

The original capacitance is (in SI units)

So, the answer to this part is 35.416 pF.

______________________________________

PART B:

The stored charge is given by

So, the answer to this part is 1.06248 nC.

______________________________________

PART C:

After the dielectric is inserted the potential difference reduces to 10 V. So, the new capacitance is

So, the answer to this part is 106.248 pF.

______________________________________

PART D:

The capacitance is given by

So, the dielectric constant of the material is 3.

______________________________________

PART E:

The original electric field was

So, the original electric field was 6000 V/m.

______________________________________

PART F:

The stored energy in the original capacitor was

So, the stored energy was 15.9372 nJ.


Related Solutions

A parallel plate capacitor with a plate area of 2.00cm^2, separated by a distance of 2.00mm...
A parallel plate capacitor with a plate area of 2.00cm^2, separated by a distance of 2.00mm is connected to a power supply with a potential difference of 240V. Find the capacitance and charge on each plate.
A parallel-plate capacitor with plate separation of 1.0 cm has square plates, each with an area...
A parallel-plate capacitor with plate separation of 1.0 cm has square plates, each with an area of 6.0 × 10 -2 m 2. What is the capacitance of this capacitor if a dielectric material with a dielectric constant of 2.4 is placed between the plates, completely filling them? ( ε 0 = 8.85 × 10 -12 C 2/N ∙ m 2) A)1.3 × 10-12 F B)1.3 × 10-10 F C)64 × 10-14 F D)15 × 10-12 F E)15 × 10-14...
An air-filled parallel-plate capacitor has plates of area 2.40 cm^2 separated by 3.00 mm. The capacitor...
An air-filled parallel-plate capacitor has plates of area 2.40 cm^2 separated by 3.00 mm. The capacitor is connected to a(n) 23.0 V battery. (a) Find the value of its capacitance. pF (b) What is the charge on the capacitor? pC (c) What is the magnitude of the uniform electric field between the plates? N/C
A parallel-plate capacitor has plates of area 0.15 m2 and a separation of 1.00 cm. A...
A parallel-plate capacitor has plates of area 0.15 m2 and a separation of 1.00 cm. A battery charges the plates to a potential difference of 100 V and is then disconnected. A dielectric slab of thickness 4 mm and dielectric constant 4.8 is then placed symmetrically between the plates. (a) What is the capacitance before the slab is inserted? pF (b) What is the capacitance with the slab in place? pF (c) What is the free charge q before the...
An air-filled parallel-plate capacitor has plates of area 2.50 cm separated by 1.00 mm. The capacitor...
An air-filled parallel-plate capacitor has plates of area 2.50 cm2 separated by 1.00 mm. The capacitor is connected to a 24.0-V battery. (a) Find the value of its capacitance._______  pF (b) What is the charge on the capacitor? _______  pC (c) What is the magnitude of the uniform electric field between the plates? _______ V/m
A disk-shaped parallel plate capacitor is made with a radius of 2 cm and a plate...
A disk-shaped parallel plate capacitor is made with a radius of 2 cm and a plate separation distance of 2/π millimeters. The dielectric is in two layers, each of thickness 1/π mm. The first layer is all composed of a material with dielectric constant 9. The second layer is actually made of two materials in a bullseye pattern. The inner circle has radius 1 cm and dielectric constant 6. The annular ring around it has dielectric constant 4. The entire...
Problem 2 – The plates of a parallel-plate capacitor are separated by a distance d =...
Problem 2 – The plates of a parallel-plate capacitor are separated by a distance d = 0.2 m. There is vacuum between the plates. The voltage difference between the plates is 150 V. The capacitance of the plates is 3 μF. a) (6 pts) Find the magnitude of the electric field between the plates (ignoring edge effects). b) (12 pts) An alpha particle, which is doubly ionized helium, He2+ (charge = 2e where e is the elementary charge, mass =...
A parallel plate capacitor has circular plates of diameter 5 cm and separation 2 mm. The...
A parallel plate capacitor has circular plates of diameter 5 cm and separation 2 mm. The space between the plates is filled with a material of dielectric constant K = 3. The charges on the plates are ± q. The charge is given by q = 27 × 10−9 C. Find: (i) the charge; (ii) the capacitance; (iii) the potential difference between the plates; (iv) the magnitude of the electric field between the plates; (v) the electric energy density between...
A dielectric-filled parallel-plate capacitor has plate area A = 10.0 cm2 , plate separation d =...
A dielectric-filled parallel-plate capacitor has plate area A = 10.0 cm2 , plate separation d = 6.00 mm and dielectric constant k = 4.00. The capacitor is connected to a battery that creates a constant voltage V = 15.0 V . Throughout the problem, use ϵ0 = 8.85×10−12 C2/N⋅m2 . a) Find the energy U1 of the dielectric-filled capacitor. Express your answer numerically in joules. b) The dielectric plate is now slowly pulled out of the capacitor, which remains connected...
A dielectric-filled parallel-plate capacitor has plate area A = 25.0 cm2 , plate separation d =...
A dielectric-filled parallel-plate capacitor has plate area A = 25.0 cm2 , plate separation d = 9.00 mm and dielectric constant k = 2.00. The capacitor is connected to a battery that creates a constant voltage V = 12.5 V . Throughout the problem, use ϵ0 = 8.85×10−12 C2/N⋅m2 . PART A: U1 was found: U1 = 3.84×10−10   J   PART B: The dielectric plate is now slowly pulled out of the capacitor, which remains connected to the battery. Find the...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT