In: Finance
A stock will pay an annual dividend next year of $5 per share. Dividends will grow at 30% for the following 2 years and then at 5% thereafter. What is V0 if K=0.1?
V0 is $149.59
Working:
| As per dividend discount method, current share price is the present value of future dividends. | ||||||
| Step-1:Present value of dividend of next 3 years | ||||||
| Year | Dividend | Discount factor | Present value | |||
| a | b | c=1.1^-a | d=b*c | |||
| 1 | $ 5.00 | 0.909091 | $ 4.55 | |||
| 2 | $ 6.50 | 0.826446 | $ 5.37 | |||
| 3 | $ 8.45 | 0.751315 | $ 6.35 | |||
| Total | $ 16.27 | |||||
| Working; | ||||||
| Dividend of Year : | ||||||
| 1 | = | $ 5.00 | ||||
| 2 | = | $ 5.00 | * | 1.3 | = | $ 6.50 |
| 3 | = | $ 6.50 | * | 1.3 | = | $ 8.45 |
| Step-2:Calculation of terminal value of dividend at the end of year 3 | ||||||
| Terminal value | = | D3*(1+g)/(Ke-g)*DF3 | Where, | |||
| = | $ 133.32 | D3(Dividend of year 3) | = | $ 8.45 | ||
| g (Growth rate in dividend) | = | 5% | ||||
| Ke (Required return) | = | 10% | ||||
| DF3 (Discount factor of year 3) | = | 0.751315 | ||||
| Step-3:Sum of present value of future dividends | ||||||
| Sum of present value of future dividends | = | $ 16.27 | + | $ 133.32 | ||
| = | $ 149.59 | |||||