Question

In: Math

A population of values has a normal distribution with μ = 194 μ = 194 and...

A population of values has a normal distribution with μ = 194 μ = 194 and σ = 13.4 σ = 13.4 . You intend to draw a random sample of size n = 127 n = 127 . Find the probability that a single randomly selected value is greater than 197.3. P(X > 197.3) = Find the probability that a sample of size n = 127 n = 127 is randomly selected with a mean greater than 197.3. P(M > 197.3) = Enter your answers as numbers accurate to 4 decimal places. Answers obtained using exact z-scores or z-scores rounded to 3 decimal places are accepted.

Solutions

Expert Solution

Solution :

Given that ,

mean = = 194

standard deviation = = 13.4

a) P(x > 197.3) = 1 - p( x< 197.3)

=1- p P[(x - ) / < (197.3 - 194) / 13.4]

=1- P(z < 0.246)

Using z table,

= 1 - 0.5972

= 0.4028

b) n = 127

=    = 194

= / n = 13.4 / 127 = 1.189

P(M > 197.3) = 1 - P(M < 197.3)

= 1 - P[(M - ) / < (197.3 - 194) / 1.189]

= 1 - P(z < 2.775)

Using z table,    

= 1 - 0.9972

= 0.0028


Related Solutions

A population of values has a normal distribution with μ = 118.4 μ = 118.4 and...
A population of values has a normal distribution with μ = 118.4 μ = 118.4 and σ = 87.7 σ = 87.7 . You intend to draw a random sample of size n = 24 n = 24 . Find the probability that a single randomly selected value is less than 62.9. P(X < 62.9) = ______ Find the probability that a sample of size n = 24 n = 24 is randomly selected with a mean less than 62.9....
A population of values has a normal distribution with μ = 110.6 μ = 110.6 and...
A population of values has a normal distribution with μ = 110.6 μ = 110.6 and σ = 74 σ = 74 . You intend to draw a random sample of size n = 157 n = 157 . Find P68, which is the score separating the bottom 68% scores from the top 32% scores. P68 (for single values) = Find P68, which is the mean separating the bottom 68% means from the top 32% means. P68 (for sample means)...
A population of values has a normal distribution with μ = 96.2 μ = 96.2 and...
A population of values has a normal distribution with μ = 96.2 μ = 96.2 and σ = 15 σ = 15 . You intend to draw a random sample of size n = 92 n = 92 . Find the probability that a single randomly selected value is between 94 and 96.5. P(94 < X < 96.5) = Find the probability that a sample of size n = 92 n = 92 is randomly selected with a mean between...
A population of values has a normal distribution with μ = 141.1 and σ = 21.9...
A population of values has a normal distribution with μ = 141.1 and σ = 21.9 . You intend to draw a random sample of size n = 144 . Find P35, which is the score separating the bottom 35% scores from the top 65% scores. P35 (for single values) = Find P35, which is the mean separating the bottom 35% means from the top 65% means. P35 (for sample means) = Enter your answers as numbers accurate to 1...
A population of values has a normal distribution with μ = 231.5 and σ = 53.2...
A population of values has a normal distribution with μ = 231.5 and σ = 53.2 . If a random sample of size n = 19 is selected , Find the probability that a single randomly selected value is greater than 241.3. Round your answer to four decimals. P(X > 241.3) = Find the probability that a sample of size n=19n=19 is randomly selected with a mean greater than 241.3. Round your answer to four decimals. P(M > 241.3) =
A population of values has a normal distribution with μ = 247.3 and σ = 5.7....
A population of values has a normal distribution with μ = 247.3 and σ = 5.7. You intend to draw a random sample of size n = 12. Find P72, which is the mean separating the bottom 72% means from the top 28% means. P72 (for sample means) = Enter your answers as numbers accurate to 1 decimal place. Answers obtained using exact z-scores or z-scores rounded to 3 decimal places are accepted.
A population of values has a normal distribution with μ = 49.1 and σ = 29.4...
A population of values has a normal distribution with μ = 49.1 and σ = 29.4 . You intend to draw a random sample of size n = 35 . Find P4, which is the mean separating the bottom 4% means from the top 96% means. P4 (for sample means) =
A population of values has a normal distribution with μ = 240.5 and σ = 70.2...
A population of values has a normal distribution with μ = 240.5 and σ = 70.2 . You intend to draw a random sample of size n = 131 . Find the probability that a single randomly selected value is between 246 and 249.7. P(246 < X < 249.7) Find the probability that a sample of size n = 131 is randomly selected with a mean between 246 and 249.7. P(246 < M < 249.7)
A population of values has a normal distribution with μ = 107.5 and σ = 9.7...
A population of values has a normal distribution with μ = 107.5 and σ = 9.7 . A random sample of size n = 133 is drawn. a.) Find the probability that a single randomly selected value is between 106.4 and 110. Round your answer to four decimal places. P ( 106.4 < X < 110 ) = b.) Find the probability that a sample of size n = 133 is randomly selected with a mean between 106.4 and 110....
A population of values has a normal distribution with μ = 180.2 and σ = 17.4...
A population of values has a normal distribution with μ = 180.2 and σ = 17.4 . You intend to draw a random sample of size n = 235 . Find the probability that a single randomly selected value is between 177.2 and 177.7. P(177.2 < X < 177.7) = Find the probability that a sample of size n = 235 is randomly selected with a mean between 177.2 and 177.7. P(177.2 < M < 177.7) =
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT