Question

In: Physics

Explain all the forces on a satellite going around the Earth

Explain all the forces on a satellite going around the Earth

Solutions

Expert Solution

When a satellite is going around the earth, it experiences several forces namely, gravitational force, centripetal force, atmospheric drag, solar radiation pressure, force due to non spheric earth and gravitational forces from other heavenly bodies.

Centripetal force : When an object is an circular motion and can be ellipitical too, it experiences outward acceleration which result in centripetal force.

Gravitational force : force due to gravity, which directly depends on the product of mass of both bodies and follows inverse square relation.

Atmospheric drag : Satellite also experience force due to atmospheric drag which is equal to .

Solar radiation pressure: It depends upon the reflectivity of satellite as well as radiation pressure of the sun.

Force due to non spheric earth will tend to decrease the inclination of the satellite and it will come closer to equator as equator has more mass accumulated.


Related Solutions

A satellite is put into an elliptical orbit around the Earth. When the satellite is at...
A satellite is put into an elliptical orbit around the Earth. When the satellite is at its perigee, its nearest point to the Earth, its height above the ground is hp=215.0 km,hp=215.0 km, and it is moving with a speed of vp=8.450 km/s.vp=8.450 km/s. The gravitational constant GG equals 6.67×10−11 m3⋅kg−1⋅s−26.67×10−11 m3·kg−1·s−2 and the mass of Earth equals 5.972×1024 kg.5.972×1024 kg. When the satellite reaches its apogee, at its farthest point from the Earth, what is its height haha above...
A satellite is put into an elliptical orbit around the Earth. When the satellite is at...
A satellite is put into an elliptical orbit around the Earth. When the satellite is at its perigee, its nearest point to the Earth, its height above the ground is ℎp=215.0 km, and it is moving with a speed of ?p=8.850 km/s. The gravitational constant ? equals 6.67×10−11 m3·kg−1·s−2 and the mass of Earth equals 5.972×1024 kg. When the satellite reaches its apogee, at its farthest point from the Earth, what is its height ℎa above the ground? For this...
A satellite is put into an elliptical orbit around the Earth. When the satellite is at...
A satellite is put into an elliptical orbit around the Earth. When the satellite is at its perigee, its nearest point to the Earth, its height above the ground is hp=215.0 km,hp=215.0 km, and it is moving with a speed of vp=8.450 km/s.vp=8.450 km/s. The gravitational constant GG equals 6.67×10−11 m3⋅kg−1⋅s−26.67×10−11 m3·kg−1·s−2 and the mass of Earth equals 5.972×1024 kg.5.972×1024 kg. When the satellite reaches its apogee, at its farthest point from the Earth, what is its height haha above...
A satellite is in an elliptical orbit around the earth. The distance from the satellite to...
A satellite is in an elliptical orbit around the earth. The distance from the satellite to the center of the earth ranges from 7.2 Mm at perigee (where the speed is 8.0 km/s) to 9.9 Mm at apogee. 1. Assume the initial conditions are x = 0, y = 7.2 × 106 m, vx = 8.0×103 m/s, and vy = 0. Use python program to print its speed, distance from the earth, kinetic energy, potential energy, and total mechanical energy...
A satellite is placed in an elongated elliptical (not circular) orbit around the Earth. At the...
A satellite is placed in an elongated elliptical (not circular) orbit around the Earth. At the point in its orbit where it is closest to the Earth, it is a distance of 1.00 × 10^6 m from the surface (not the center) of the Earth, and is moving at a velocity of 5.14 km/s. At the point in its orbit when it is furthest from the Earth it is a distance of 2.00×10^6 m from the surface of the Earth....
Two satellites are in circular orbits around the earth. The orbit for satellite A is at...
Two satellites are in circular orbits around the earth. The orbit for satellite A is at a height of 555 km above the earth’s surface, while that for satellite B is at a height of 778 km. Find the orbital speed for (a) satellite A and (b) satellite B.
Two satellites are in circular orbits around the earth. The orbit for satellite A is at...
Two satellites are in circular orbits around the earth. The orbit for satellite A is at a height of 458 km above the earth’s surface, while that for satellite B is at a height of 732 km. Find the orbital speed for (a) satellite A and (b) satellite B.
What's ratio of the orbital period for a satellite in a geosynchronous orbit around the Earth...
What's ratio of the orbital period for a satellite in a geosynchronous orbit around the Earth to that of a satellite in an orbit slightly above the surface of the Earth? The Earth has a radius of 6371km, and a satellite in a circular geosynchronous orbit has a radius of 42000km from the center of the earth. The mass of the Earth is 5.792*10^24kg, and Newton's gravitation constant is G=6.674*10^-11N*m^2/kg^2
A satellite with Mass m is in orbit with a constant radius around the earth r0...
A satellite with Mass m is in orbit with a constant radius around the earth r0 (RE=6370km, Mass ME = 5,98*1024kg) a) Show that the satellite moves with uniform circular motion and calculate the velocity v0 in dependance of G,M E and R E . b) At which height h above the earth's surface is the geostationary orbit found? Which linear velocity does a satellite have at this height? c) Compare this to the linear velocity on earth's surface as...
A geostationary satellite is in a circular orbit around the Earth. What is the linear speed...
A geostationary satellite is in a circular orbit around the Earth. What is the linear speed of the satellite?
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT