Question

In: Physics

One particle whose mass is defined by m is moving along a certain line in the...

One particle whose mass is defined by m is moving along a certain line in the region x>0 is subjected to a conservative net force given by the following equation: F(x)= F₀x eˣ^²/²ᴸ^²

The constants F and L are both positive real quantities with appropriate physical dimensions.

Find the formula for the corresponding U(x), with the given assumption that the limₓ↠∞U(x)=0.

Secondly, we know that the particle is launched from an initial location x₀>>>L towards x=0. (the >>> mean that its a lot larger) What is the smallest possible speed by which it is launched that still guarantees that the particle experiences maximum possible acceleration magnitude during the motion? So, acceleration of the particle =? when its speed is 1/2 its launching speed?

Solutions

Expert Solution


Related Solutions

A particle of mass M moves along a straight line with initial speed vi. A force...
A particle of mass M moves along a straight line with initial speed vi. A force of magnitude Fpushes the particle a distance D along the direction of its motion. A) Find vf, the final speed of the particle after it has traveled a distance D. Express the final speed in terms of vi, M, F, and D. B) By what multiplicative factor RK does the initial kinetic energy increase, and by what multiplicative factor RW does the work done...
The displacement (in centimeters) of a particle moving back and forth along a straight line is...
The displacement (in centimeters) of a particle moving back and forth along a straight line is given by the equation of motion s = 3 sin(πt) + 4 cos(πt), where t is measured in seconds. (Round your answers to two decimal places.) (a) Find the average velocity during each time period. (i)    [1, 2] _______cm/s (ii)    [1, 1.1] _______ cm/s (iii)    [1, 1.01] ______ cm/s (iv)    [1, 1.001] _______cm/s B) Estimate the instantaneous velocity of the particle when t=1.
A moving particle of mass M and impulse P breaks down in two fragments. One of...
A moving particle of mass M and impulse P breaks down in two fragments. One of these has a mass m1=1.00 MeV/c2​ and an impulse p1 = 1.75Mev/c in the +x direction. The other one has a mass m2 = 1.50 MeV/c2 and an impulse p2 = 2.005 MeV/c in the +y direction. Find: a) The initial impulse (value and direction) b) Total energy of the initial particle c) The mass M of the initial particle d) The value of...
A particle with mass m and energy E is moving in one-dimension from right to legt....
A particle with mass m and energy E is moving in one-dimension from right to legt. It is incident on the step potential V(x)=0 for x<0 nd V(x)=V0 for x>0 where E>V0>0. Find the reflection coefficient R in terms of m,E and V0, and h-bar.
The velocity function of a particle moving along a line is given by the equation v(t)...
The velocity function of a particle moving along a line is given by the equation v(t) = t2 - 2t -3. The particle has initial position s(0) = 4. a. Find the displacement function b. Find the displacement traveled between t = 2 and t = 4 c. Find when the particle is moving forwards and when it moves backwards d. Find the total distance traveled between t = 2 and t = 4 e. Find the acceleration function, and...
The velocity function for a particle moving along a straight line is given by v(t) =...
The velocity function for a particle moving along a straight line is given by v(t) = 2 − 0.3t for 0 ≤ t ≤ 10, where t is in seconds and v in meters/second. The particle starts at the origin. (a) Find the position and acceleration functions for this particle. (b) After ten seconds, how far is the particle from its starting point? (c) What is the total distance travelled by the particle in the interval [0, 10]?
1). A car is moving along a straight line defined to be the positive x direction....
1). A car is moving along a straight line defined to be the positive x direction. Its velocity is measured and found to be a function of time given by Vx(t)=(alpha)t^2 , where alpha is a known constant. The car was at the point x = A at the time t = 2sec. Find the car's position as a function of time. How fast would the car be going just before it hits a wall located at x = L?...
A particle moves along the x axis. It is initially at the position 0.250 m, moving...
A particle moves along the x axis. It is initially at the position 0.250 m, moving with velocity 0.070 m/s and acceleration -0.250 m/s2. Suppose it moves with constant acceleration for 3.90 s. Assume it moves with simple harmonic motion for 3.90 s and x = 0 is its equilibrium position. (a) Find its position. (b) Find its velocity at the end of this time interval.
A particle moves along the x axis. It is initially at the position 0.200 m, moving...
A particle moves along the x axis. It is initially at the position 0.200 m, moving with velocity 0.140 m/s and acceleration -0.410 m/s2. Suppose it moves with constant acceleration for 5.50 s. We take the same particle and give it the same initial conditions as before. Instead of having a constant acceleration, it oscillates in simple harmonic motion for 5.50 s around the equilibrium position x = 0. Hint: the following problems are very sensitive to rounding, and you...
The position of a particle moving along a line (measured in meters) is s(t) where t...
The position of a particle moving along a line (measured in meters) is s(t) where t is measured in seconds. Answer all parts, include units in your answers. s(t)=2t^3 +6t^2 −48t+7 −10<t<10 (a) Find the velocity function. (b) Find all times at which the particle is at rest. (c) On what interval is the particle moving to the right? (d) Is the particle slowing down or speeding up at t = −1 seconds?
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT