Partial Differential Equations
(a) Find the general solution to the given partial differential
equation and (b) use it to find the solution satisfying the given
initial data.
Exercise 1. 2∂u ∂x − ∂u ∂y = (x + y)u
u(x, x) = e −x 2
Exercise 2. ∂u ∂x = −(2x + y) ∂u ∂y
u(0, y) = 1 + y 2
Exercise 3. y ∂u ∂x + x ∂u ∂y = 0
u(x, 0) = x 4
Exercise 4. ∂u...
A) Find the general solution of the given differential equation.
y'' + 8y' + 16y = t−2e−4t, t > 0
B) Find the general solution of the given differential equation.
y'' − 2y' + y = 9et / (1 + t2)
Use the one solution given below to find the general solution of
the differential equation below by reduction of order method:
(1 - 2x) y'' + 2y' + (2x - 3) y = 0
One solution: y1 = ex
find the general solution of the given differential
equation.
1. y'' + y = tan t, 0 < t < π/2
2. y'' + 4y' + 4y = t-2 e-2t , t >
0
find the solution of the given initial value problem.
3. y'' + y' − 2y = 2t, y(0) = 0, y'(0) = 1
1)Find the general solution of the given second-order
differential equation.
y'' − 7y' + 6y = 0
2)Solve the given differential equation by undetermined
coefficients.
y'' + 4y = 6 sin(2x)
Using method of variation of parameters, solve the differential
equation: y''+y'=e^(2x)
Find the general solution, and particular solution using this
method.