Question

In: Physics

A -3.00 nCnC point charge is at the origin, and a second -5.00 nCnC point charge...

A -3.00 nCnC point charge is at the origin, and a second -5.00 nCnC point charge is on the xx-axis at xx = 0.800 mm.

Part A

Find the electric field (magnitude and direction) at point on the xx-axis at xx = 0.200 mm.

Express your answer with the appropriate units. Enter positive value if the field is in the positive xx-direction and negative value if the field is in the negative xx-direction.

Ex =

−800NC

SubmitPrevious AnswersRequest Answer

Incorrect; Try Again; 3 attempts remaining

Part B

Find the electric field (magnitude and direction) at point on the xx-axis at xx = 1.20 mm.

Express your answer with the appropriate units. Enter positive value if the field is in the positive xx-direction and negative value if the field is in the negative xx-direction.

Ex =

nothingnothing

SubmitRequest Answer

Part C

Find the electric field (magnitude and direction) at point on the xx-axis at xx = -0.200 mm.

Express your answer with

Solutions

Expert Solution


Related Solutions

A -3.00 nC point charge is at the origin, and a second -6.50 nC point charge...
A -3.00 nC point charge is at the origin, and a second -6.50 nC point charge is on the x-axis at x = 0.800 mm. a. Find the electric field (magnitude and direction) at point on the x-axis at x = 0.200 m. b.Find the electric field (magnitude and direction) at point on the x-axis at x= 1.20 m. c.Find the electric field (magnitude and direction) at point on the x-axis at x = -0.200 m.
A -3.00 nC point charge is at the origin, and a second -5.50 nC point charge...
A -3.00 nC point charge is at the origin, and a second -5.50 nC point charge is on the x-axis at x = 0.800 m. Q1: Find the net electric force that the two charges would exert on an electron placed at point on the x-axis at x = 0.200 m. Q2: Find the net electric force that the two charges would exert on an electron placed at point on the x-axis at x = 1.20 m. Q3: Find the...
A -3.00 nC point charge is at the origin, and a second -5.50 nC point charge...
A -3.00 nC point charge is at the origin, and a second -5.50 nC point charge is on the x-axis at x = 0.800 m. Q1: Find the net electric force that the two charges would exert on an electron placed at point on the x-axis at x = 1.20 mm. Q2: Find the net electric force that the two charges would exert on an electron placed at point on the x-axis at x = -0.200 m
A -4.00 nC point charge is at the origin, and a second -5.00 nC point charge...
A -4.00 nC point charge is at the origin, and a second -5.00 nC point charge is on the x-axis at x = 0.800 mm. a. Find the net electric force that the two charges would exert on an electron placed at point on the x-axis at x = 0.200 mm. b. Find the net electric force that the two charges would exert on an electron placed at point on the x-axis at x = 1.20 mm. c. Find the...
A point charge with charge q1q1 = +5.00 nC is fixed at the origin. A second...
A point charge with charge q1q1 = +5.00 nC is fixed at the origin. A second point charge with charge q2q2 = -6.00 nC is located on the x axis at x = 4.00 m. 1) Where along the x axis will a third point charge of qq = +2.00 nC charge need to be for the net electric force on it due to the two fixed charges to be equal to zero? (Express your answer to three significant figures.)...
A point charge of is at the origin, and a second point charge of +6.00nC is...
A point charge of is at the origin, and a second point charge of +6.00nC is on the x axis at x=0.800m Find the magnitude and direction of the electric field at each of the following points on the x axis a)x=20.0cm b)x=1.20m c) -20.0cm so, since its electric field question using e=k*q/r^2 i can solve this so, e= (k*q/r^2) + (k*q/r^2) so, +6.00nC is on the x axis at x=0.800m.... and -4.00nC is at the origin.. so 0. a)...
A point charge of -2.5 µC is located at the origin. A second point charge of...
A point charge of -2.5 µC is located at the origin. A second point charge of 11 µC is at x = 1 m, y = 0.5 m. Find the x and y coordinates of the position at which an electron would be in equilibrium. x =  m y =  m
A point charge of -1.5 µC is located at the origin. A second point charge of...
A point charge of -1.5 µC is located at the origin. A second point charge of 10 µC is at x = 1 m, y = 0.5 m. Find the x and y coordinates of the position at which an electron would be in equilibrium.
A point charge of -2.5 µC is located at the origin. A second point charge of...
A point charge of -2.5 µC is located at the origin. A second point charge of 9 µC is at x = 1 m, y = 0.5 m. Find the x and y coordinates of the position at which an electron would be in equilibrium. 1)x =( ) m 2)y = ()m
A -3.50 nC point charge is at the origin, and a second -5.50 nC point charge...
A -3.50 nC point charge is at the origin, and a second -5.50 nC point charge is on the x-axis at x = 0.800 mm. D) Find the net electric force that the two charges would exert on an electron placed at point on the x-axis at x = 0.200 mm. Express your answer with the appropriate units. Enter positive value if the force is in the positive x-direction and negative value if the force is in the negative x-direction....
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT