In: Finance
A three-year old 10-year 8% semi-annual coupon bond is selling at $1,200 today. If the yield increases by 25 basis points, how much of the price change is due to
convexity of the bond? (Face Value = $1,000)
| K = Nx2 |
| Bond Price =∑ [( Coupon)/(1 + YTM/2)^k] + Par value/(1 + YTM/2)^Nx2 |
| k=1 |
| K =10x2 |
| 1200 =∑ [(8*1000/200)/(1 + YTM/200)^k] + 1000/(1 + YTM/200)^10x2 |
| k=1 |
| YTM% = 5.39 |

| Period | Cash Flow | Discounting factor | PV Cash Flow | Duration Calc | Convexity Calc |
| 0 | ($1,200.00) | =(1+YTM/number of coupon payments in the year)^period | =cashflow/discounting factor | =PV cashflow*period | =duration calc*(1+period)/(1+YTM/N)^2 |
| 1 | 40.00 | 1.03 | 38.95 | 38.95 | 73.87 |
| 2 | 40.00 | 1.05 | 37.93 | 75.86 | 215.78 |
| 3 | 40.00 | 1.08 | 36.93 | 110.80 | 420.24 |
| 4 | 40.00 | 1.11 | 35.96 | 143.85 | 682.02 |
| 5 | 40.00 | 1.14 | 35.02 | 175.10 | 996.18 |
| 6 | 40.00 | 1.17 | 34.10 | 204.60 | 1,358.05 |
| 7 | 40.00 | 1.20 | 33.21 | 232.44 | 1,763.21 |
| 8 | 40.00 | 1.24 | 32.33 | 258.68 | 2,207.49 |
| 9 | 40.00 | 1.27 | 31.49 | 283.37 | 2,686.95 |
| 10 | 40.00 | 1.30 | 30.66 | 306.60 | 3,197.87 |
| 11 | 40.00 | 1.34 | 29.86 | 328.41 | 3,736.74 |
| 12 | 40.00 | 1.38 | 29.07 | 348.86 | 4,300.26 |
| 13 | 40.00 | 1.41 | 28.31 | 368.01 | 4,885.31 |
| 14 | 40.00 | 1.45 | 27.57 | 385.92 | 5,488.97 |
| 15 | 40.00 | 1.49 | 26.84 | 402.64 | 6,108.48 |
| 16 | 40.00 | 1.53 | 26.14 | 418.21 | 6,741.27 |
| 17 | 40.00 | 1.57 | 25.45 | 432.68 | 7,384.90 |
| 18 | 40.00 | 1.61 | 24.78 | 446.11 | 8,037.11 |
| 19 | 40.00 | 1.66 | 24.13 | 458.54 | 8,695.78 |
| 20 | 1,040.00 | 1.70 | 611.01 | 12,220.17 | 243,331.34 |
| Total | 17,639.80 | 312,311.80 |
| Convexity =(∑ convexity calc)/(bond price*number of coupon per year^2) |
| =312311.8/(1200*2^2) |
| =65.06 |
| Using convexity adjustment |
| Convexity adjustment = 0.5*convexity*Yield_Change^2*Bond_Price |
| 0.5*65.06*0.0025^2*1200 |
| =0.24 |