Question

In: Physics

Determine the starting position of a 15 kg block in order to have it travel 8...

Determine the starting position of a 15 kg block in order to have it travel 8 meters up a 30 degree ramp with a constant force applied of 8N. Assume Us and Uk both equal 0.30.

Part 1: calculate acceleration of the box up the ramp then determine velocity needed at the bottom of the ramp for the box to travel up 8m with 80N force applied.

Part 2: calculate initial position of the box needed to achieve velocity at the bottom of the ramp calulate in part 1.

Part 3: Predict whether or not the box will slide down after stopping at 8m up the ramp.

Solutions

Expert Solution

The concept used in this question is of balancing of forces and equation of motion , initially i draw the free body diagram and then apply balances and the conditions given in the problem and finally deduced the magnitude of the velocity ai the bottom , initial position of the block and the acceleration asked in the question .

kindly upvote my answer , if you like , by clicking on the like button.


Related Solutions

For this question (Determine the velocity of the 60 kg block A if the two blocks...
For this question (Determine the velocity of the 60 kg block A if the two blocks are released from rest and the 40 kg block B moves 0.6 m up the in cline. The coefficient of kinetic friction between both blocks and the inclined planes is = 0.05.), how is T(2) = 110 V(a)^2 instead of T(2) = -50V(a)^2
A 5 kg block starting with an initial velocity of 7.69 m/s travels a distance of...
A 5 kg block starting with an initial velocity of 7.69 m/s travels a distance of x m along a rough surface that has a coefficient of kinetic friction of μ=0.15. It then travels up a frictionless ramp at an angle of 17.0⁰ to a height of 1.38 m until it stops. How far does it travel along the rough surface - what is the x? (Note there may be more information provided in the problem statement than you need...
Starting with a speed of 2.50 m/s, a 2.00 kg block slides across a rough horizontal...
Starting with a speed of 2.50 m/s, a 2.00 kg block slides across a rough horizontal surface until it collides with a spring. The spring compresses a distance of 6.00cm as the block comes momentarily to rest. The total distance traveled by the block from its starting position to the position where it comes to rest is 0.800m. If the coefficient of kinetic friction between the block and the surface is 0.100, what is the spring constant of the spring?
A block of 4 kg moves in the +x direction with a velocity of 15 m/s...
A block of 4 kg moves in the +x direction with a velocity of 15 m/s while a block of 6 kg moves in the +y direction with a velocity of 10 m/s. They collide and stick together. Calculate the following: a. What is the momentum in this system? b. What is the final velocity of the two blocks?
A block of mass m2 = 15 kg on a rough 30°-inclined plane is connected to...
A block of mass m2 = 15 kg on a rough 30°-inclined plane is connected to a 5-kg mass (m1) by a string of negligible mass passing over a pulley that is shaped like a disk. The 2-kg pulley has radius 15 cm and rotates about its symmetry axis of rotation. The string does not slip on the pulley and causes the pulley to rotate about a fixed horizontal axle through its center of mass. When this system is released...
A block of ice, mass 3.20 kg and initial temperature of -8 oC, is placed in...
A block of ice, mass 3.20 kg and initial temperature of -8 oC, is placed in an insulating container. 5.00 kg of water at temperature 13 oC, is added to the container. The water and ice exchange heat, but no other heat flows into or out of the container. In the process of the water and ice reaching equilibrium, how much ice melts? Give your answer in kg to three digits. Note: It is possible that the answer is zero.
A 15 g bullet is fired at 610 m/s into a 4.0 kg block that sits...
A 15 g bullet is fired at 610 m/s into a 4.0 kg block that sits at the edge of a 75-cm- high table. The bullet embeds itself in the block and carries it off the table. How far from the point directly below the table's edge does the block land?
A 15 kg block is dragged over a rough, hor- izontal surface by a constant force...
A 15 kg block is dragged over a rough, hor- izontal surface by a constant force of 107 N acting at an angle of angle 31.9◦ above the horizontal. The block is displaced 59 m and the coefficient of kinetic friction is 0.189. Find the work done by the 107 N force. The 2 003 (part 2 of 5) 10.0 points Find the magnitude of the work done by the force of friction. Answer in units of J. 004 (part...
A 15 g bullet is fired at 650 m/s into a 4.7 kg block that sits...
A 15 g bullet is fired at 650 m/s into a 4.7 kg block that sits at the edge of a 80-cm-high table. The bullet embeds itself in the block and carries it off the table. How far from the point directly below the table's edge does the block land?
Starting from rest, a 4.20-kg block slides 2.30 m down a rough 30.0° incline. The coefficient...
Starting from rest, a 4.20-kg block slides 2.30 m down a rough 30.0° incline. The coefficient of kinetic friction between the block and the incline is μk = 0.436. (a) Determine the work done by the force of gravity. J (b) Determine the work done by the friction force between block and incline. J (c) Determine the work done by the normal force. J (d) Qualitatively, how would the answers change if a shorter ramp at a steeper angle were...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT