In: Finance
You are planning on taking a loan for $ 49 ,000. You will repay the loan in annual payments over the next 7 years and the loan has a stated interest rate of 6 %. For the very last payment on your loan, how much of this is repayment of principal? For example, if the loan payment is $400 of which $30 is interest and $370 is principal, your answer is $370. Enter your answer to the nearest $.01. Do not use $ or , signs in your answer. Enter your answer as a positive number.
| Step-1:Calculation of Monthly Payment | |||||||||||||
| Annual Payment | = | Loan Amount/ Present Value of annuity of 1 | |||||||||||
| = | $ 49,000 | / | 5.5823814 | ||||||||||
| = | $ 8,777.62 | ||||||||||||
| Working: | |||||||||||||
| Present Value of annuity of 1 | = | (1-(1+i)^-n)/i | Where, | ||||||||||
| = | (1-(1+0.06)^-7)/0.06 | i | 6% | ||||||||||
| = | 5.5823814 | n | 7 | ||||||||||
| Step-2:Preparation of Loan Amortization Schedule | |||||||||||||
| Year | Beginning Loan amount | Interest Expense | Annual Payment | Reduction in Principal | Ending Loan Balance | ||||||||
| 1 | $ 49,000.00 | $ 2,940.00 | $ 8,777.62 | $ 5,837.62 | $ 43,162.38 | ||||||||
| 2 | $ 43,162.38 | $ 2,589.74 | $ 8,777.62 | $ 6,187.87 | $ 36,974.51 | ||||||||
| 3 | $ 36,974.51 | $ 2,218.47 | $ 8,777.62 | $ 6,559.15 | $ 30,415.37 | ||||||||
| 4 | $ 30,415.37 | $ 1,824.92 | $ 8,777.62 | $ 6,952.69 | $ 23,462.67 | ||||||||
| 5 | $ 23,462.67 | $ 1,407.76 | $ 8,777.62 | $ 7,369.86 | $ 16,092.82 | ||||||||
| 6 | $ 16,092.82 | $ 965.57 | $ 8,777.62 | $ 7,812.05 | $ 8,280.77 | ||||||||
| 7 | $ 8,280.77 | $ 496.85 | $ 8,777.62 | $ 8,280.77 | $ 0.00 | ||||||||
| Thus, | |||||||||||||
| Repayment of Last payment in the form of Principal | $ 8,280.77 | ||||||||||||