In: Computer Science
Create the following algorithms in c++ as a call to method:
1. HeapSort
2. QuickSort
3. MergeSort
1. HeapSort
// C++ program for implementation of Heap Sort
#include <iostream>
using namespace std;
// To heapify a subtree rooted with node i which is
// an index in arr[]. n is size of heap
void heapify(int arr[], int n, int i)
{
int largest = i; // Initialize largest as root
int l = 2*i + 1; // left = 2*i + 1
int r = 2*i + 2; // right = 2*i + 2
// If left child is larger than root
if (l < n && arr[l] >
arr[largest])
largest = l;
// If right child is larger than largest so
far
if (r < n && arr[r] >
arr[largest])
largest = r;
// If largest is not root
if (largest != i)
{
swap(arr[i], arr[largest]);
// Recursively heapify the
affected sub-tree
heapify(arr, n, largest);
}
}
// main function to do heap sort
void heapSort(int arr[], int n)
{
// Build heap (rearrange array)
for (int i = n / 2 - 1; i >= 0; i--)
heapify(arr, n, i);
// One by one extract an element from heap
for (int i=n-1; i>0; i--)
{
// Move current root to end
swap(arr[0], arr[i]);
// call max heapify on the
reduced heap
heapify(arr, i, 0);
}
}
/* A utility function to print array of size n */
void printArray(int arr[], int n)
{
for (int i=0; i<n; ++i)
cout << arr[i] << "
";
cout << "\n";
}
// Driver program
int main()
{
int arr[] = {12, 11, 13, 5, 6, 7};
int n = sizeof(arr)/sizeof(arr[0]);
cout << "Given array is \n";
printArray(arr, n);
heapSort(arr, n);
cout << "Sorted array is \n";
printArray(arr, n);
}
output
2. QuickSort
#include <bits/stdc++.h>
using namespace std;
void swap(int* ele1, int* ele2) // swapping the elements
{
int t = *ele1;
*ele1 = *ele2;
*ele2 = t;
}
int partition (int a[], int beg, int end) // partitioning the
elements
{
int pivot = a[end];
int i = (beg - 1);
for (int j = beg; j <= end - 1; j++)
{
if (a[j] < pivot)
{
i++;
swap(&a[i], &a[j]);
}
}
swap(&a[i + 1], &a[end]);
return (i + 1);
}
void quickSort(int a[], int beg, int end) // sorting the
elements based on partitioning index
{
if (beg < end)
{
int pIndex = partition(a, beg, end);
quickSort(a, beg, pIndex - 1);
quickSort(a, pIndex + 1, end);
}
}
void display(int a[], int n) // displaying the elements of the
array
{
for (int i = 0; i < n; i++)
cout << a[i] << " ";
cout << endl;
}
int main()
{
int a[] = {10, 7, 8, 9, 1, 5};
int n = sizeof(a) / sizeof(a[0]);
cout << "Elements of array before sorting: \n";
display(a, n);
quickSort(a, 0, n - 1);
cout << "Elements of array after sorting: \n";
display(a, n);
return 0;
}
output
3. Mergesort
// C++ program for Merge Sort
#include<iostream>
using namespace std;
// Merges two subarrays of arr[].
// First subarray is arr[l..m]
// Second subarray is arr[m+1..r]
void merge(int arr[], int l, int m, int r)
{
int n1 = m - l + 1;
int n2 = r - m;
// Create temp arrays
int L[n1], R[n2];
// Copy data to temp arrays L[] and R[]
for(int i = 0; i < n1; i++)
L[i] = arr[l + i];
for(int j = 0; j < n2; j++)
R[j] = arr[m + 1 + j];
// Merge the temp arrays back into arr[l..r]
// Initial index of first subarray
int i = 0;
// Initial index of second subarray
int j = 0;
// Initial index of merged subarray
int k = l;
while (i < n1 && j < n2)
{
if (L[i] <= R[j])
{
arr[k] =
L[i];
i++;
}
else
{
arr[k] =
R[j];
j++;
}
k++;
}
// Copy the remaining elements of
// L[], if there are any
while (i < n1)
{
arr[k] = L[i];
i++;
k++;
}
// Copy the remaining elements of
// R[], if there are any
while (j < n2)
{
arr[k] = R[j];
j++;
k++;
}
}
// l is for left index and r is
// right index of the sub-array
// of arr to be sorted */
void mergeSort(int arr[], int l, int r)
{
if (l < r)
{
// Same as (l+r)/2, but
avoids
// overflow for large l and h
int m = l + (r - l) / 2;
// Sort first and second
halves
mergeSort(arr, l, m);
mergeSort(arr, m + 1, r);
merge(arr, l, m, r);
}
}
// UTILITY FUNCTIONS
// Function to print an array
void printArray(int A[], int size)
{
for(int i = 0; i < size; i++)
cout << A[i] << "
";
}
// Driver code
int main()
{
int arr[] = { 12, 11, 13, 5, 6, 7 };
int arr_size = sizeof(arr) / sizeof(arr[0]);
cout << "Given array is \n";
printArray(arr, arr_size);
mergeSort(arr, 0, arr_size - 1);
cout << "\nSorted array is \n";
printArray(arr, arr_size);
return 0;
}
Output