In: Chemistry
Consider the triprotic acid, H3A; pKa1: 2.91; pKa2: 8.2; pKa3: 13.3. Calculate the pH and the concentrations of H3A, H2A-, HA2-, A3-, OH- and H3O+ at equilibrium in a 0.10 M solution of the triprotic acid.
Given,
pKa1 = 2.91, pKa2 = 8.2, pKa3 = 13.3
=> Ka1 = 1.23 x 10^-3
=> Ka2 = 6.31 x 10^-9
=> Ka3 = 5.01 x 10^-14
H3A ------> H+ + H2A-
0.1 - X......X+Y+Z ......X - Y
Ka1 = 1.23 x 10^-3 = (X+Y+Z) (X-Y) / (0.1 - X)
Since Ka1 >> Ka2 >> Ka3 => X >> Y >> Z
=> 1.23 x 10^-3 = X^2 / 0.1 - X
=> X = 0.011 M
H2A- -----> H+ + HA 2-
X - Y.......X+Y+Z........Y - Z
Ka2 = (X+Y+Z) (Y-Z) / (X-Y)
=> 6.31 x 10^-9 = Y
HA2- -----> H+ + A 3-
Y - Z .....X+Y+Z......Z
Ka3 = 5.01 x 10^-14 = (X+Y+Z) (Z) / (Y-Z) = XZ / Y
=> 5.01 x 10^-14 = 0.011 x Z / 6.31 x 10^-9
=> Z = 2.87 x 10^-20 M
[H+] = X+Y+Z = X (approx.) = 0.011 M = [H3O+]
=> pH = - log [H3O+] = - log 0.011 = 1.96
[H3A] = 0.1 - X = 0.1 - 0.011 = 0.089 M
[H2A-] = X - Y = 0.011 M
[HA 2-] = Y - Z = 6.31 x 10^-9 M
[A 3-] = Z = 2.87 x 10^-20 M
[OH-] = 10^-14 / [H+] = 9.1 x 10^-13 M