In: Statistics and Probability
Ch 04 HW 3 Forecasting problem Method: Linear Trend optimized with Solver - pick your own initial values for the y-axis intercept (a) and slope parameter (b) before optimizing the model The data for this problem is shown in the table below. Note: changes from the original problem data are highlighted in yellow. DO NOT USE the "brute force" method shown in Example 8 on pages 120-121. DO NOT USE the linear regression function from Excel's ToolPak or the LINEST Excel function. Set up a forecasting table and use Excel Solver to optimize it. Time (t) Actual A(t) 1 950 2 930 3 940 4 955 5 972 6 926 7 834 8 840 9 828 10 813 11 don't have yet What is the value for MAD using this method?
MAD = 26.12727
Period | Demand (y) | Period(x) | Forecast | Error | Absolute | Squared | Abs Pct Err | |
Period 1 | 950 | 1 | 976.6909 | -26.6909 | 26.69091 | 712.4046 | 02.81% | |
Period 2 | 930 | 2 | 959.3818 | -29.3818 | 29.38182 | 863.2912 | 03.16% | |
Period 3 | 940 | 3 | 942.0727 | -2.07273 | 2.072727 | 4.296198 | 00.22% | |
Period 4 | 955 | 4 | 924.7636 | 30.23636 | 30.23636 | 914.2377 | 03.17% | |
Period 5 | 972 | 5 | 907.4545 | 64.54545 | 64.54545 | 4166.116 | 06.64% | |
Period 6 | 926 | 6 | 890.1455 | 35.85455 | 35.85455 | 1285.548 | 03.87% | |
Period 7 | 834 | 7 | 872.8364 | -38.8364 | 38.83636 | 1508.263 | 04.66% | |
Period 8 | 840 | 8 | 855.5273 | -15.5273 | 15.52727 | 241.0962 | 01.85% | |
Period 9 | 828 | 9 | 838.2182 | -10.2182 | 10.21818 | 104.4112 | 01.23% | |
Period 10 | 813 | 10 | 820.9091 | -7.90909 | 7.909091 | 62.55372 | 00.97% | |
Total | -1.1E-13 | 261.2727 | 9862.218 | 28.58% | ||||
Intercept | 994 | Average | -1.1E-14 | 26.12727 | 986.2218 | 02.86% | ||
Slope | -17.309091 | Bias | MAD | MSE | MAPE | |||
SE | 35.11093 | |||||||
Correlation | -0.84546 | |||||||
Coefficient of determination | 0.714797 |