In: Finance
A 25-year, $1,000 par value bond has an 8.5% annual coupon. The bond currently sells for $1,175. If the yield to maturity remains at its current rate, what will the price be 5 years from now? Select the correct answer. a. $1,159.09 b. $1,165.29 c. $1,168.39 d. $1,162.19 e. $1,155.99
K = N |
Bond Price =∑ [(Annual Coupon)/(1 + YTM)^k] + Par value/(1 + YTM)^N |
k=1 |
K =25 |
1175 =∑ [(8.5*1000/100)/(1 + YTM/100)^k] + 1000/(1 + YTM/100)^25 |
k=1 |
YTM% = 7 |
K = N |
Bond Price =∑ [(Annual Coupon)/(1 + YTM)^k] + Par value/(1 + YTM)^N |
k=1 |
K =20 |
Bond Price =∑ [(8.5*1000/100)/(1 + 6.9985/100)^k] + 1000/(1 + 6.9985/100)^20 |
k=1 |
Bond Price = 1159.09 |