Question

In: Advanced Math

(c) [2] For which of the following functions are the level curves linear?   (I) f(x, y)...

(c) [2] For which of the following functions are the level curves linear?  

(I) f(x, y) = tan(x + y)

(II) g(x, y) = e^y/x (e to the power of y over x)

(III) h(x, y) = ln(xy)

(A) none (B) I only (E) I and II (F) I and III

(C) II only (G) II and III

(D) III only (H) all three

A partial table of values for a function f(x,y) is given below. Which of the following are positive?

(I) fy(4, 1)

(II) fx(4, 1) (III) fxx(4, 1)

x=3

x=4

x=5

x=6

y=0

2.3

2.2

2.0

1.7

y=1

2.4

2.5

2.7

3.0

y=2

2.5

2.7

2.9

3.2

y=3

2.6

3.0

3.0

3.3

Solutions

Expert Solution

3.

Thus it is not a linear equation . so only option I is a linear eqn Option B only I is correct.

please give me upvote . Thank you.


Related Solutions

Sketch the level curves f(x, y) = c and the level surfaces f(x, y, z) = c of the functions for the indicated values of c.
Sketch the level curves f(x, y) = c and the level surfaces f(x, y, z) = c of the functions for the indicated values of c.
3. Let F : X → Y and G: Y → Z be functions. i. If...
3. Let F : X → Y and G: Y → Z be functions. i. If G ◦ F is injective, then F is injective. ii. If G ◦ F is surjective, then G is surjective. iii. If G ◦ F is constant, then F is constant or G is constant. iv. If F is constant or G is constant, then G ◦ F is constant.
Consider a function f(x) which satisfies the following properties: 1. f(x+y)=f(x) * f(y) 2. f(0) does...
Consider a function f(x) which satisfies the following properties: 1. f(x+y)=f(x) * f(y) 2. f(0) does not equal to 0 3. f'(0)=1 Then: a) Show that f(0)=1. (Hint: use the fact that 0+0=0) b) Show that f(x) does not equal to 0 for all x. (Hint: use y= -x with conditions (1) and (2) above.) c) Use the definition of the derivative to show that f'(x)=f(x) for all real numbers x d) let g(x) satisfy properties (1)-(3) above and let...
Consider the scalar functions f(x,y,z)g(x,y,z)=x^2+y^2+z^2, g(x,y,z)=xy+xz+yz, and=h(x,y,z)=√xyz Which of the three vector fields ∇f∇f, ∇g∇g and...
Consider the scalar functions f(x,y,z)g(x,y,z)=x^2+y^2+z^2, g(x,y,z)=xy+xz+yz, and=h(x,y,z)=√xyz Which of the three vector fields ∇f∇f, ∇g∇g and ∇h∇h are conservative?
For the following functions f and g : f(x, y) = e ax − (1 −...
For the following functions f and g : f(x, y) = e ax − (1 − a)lny a > 0 g(x, y, z) = −3x 2 − 3y 2 − 3z 2 + 2xy + 2xz + 2yz 1. Calculate the Hessian matrices of f and g noted Hf (x, y) and Hg(x, y, z) 2. Show that Hg(x, y, z) is define negativly for all (x, y, z) ∈ Dg 3. For what value o a is , Hf...
Let F (x, y) = y sin x i – cos x j, where C is...
Let F (x, y) = y sin x i – cos x j, where C is the line segment from (π/2,0) to (π, 1). Then C F•dr is A 1 B 2 C 5/2 D 3 E 7/2
The curves of the quadratic and cubic functions are f(x)=2x-x^2 and g(x)= ax^3 +bx^2+cx+d. where a,b,c,d...
The curves of the quadratic and cubic functions are f(x)=2x-x^2 and g(x)= ax^3 +bx^2+cx+d. where a,b,c,d ER, intersect at 2 points P and Q. These points are also two points of tangency for the two tangent lines drawn from point A(2,9) upon the parobala. The graph of the cubic function has a y-intercept at (0,-1) and an x intercept at (-4,0). What is the standard equation of the tangent line AP.
The curves of the quadratic and cubic functions are f(x)=2x-x^2 and g(x)= ax^3 +bx^2+cx+d. where a,b,c,d...
The curves of the quadratic and cubic functions are f(x)=2x-x^2 and g(x)= ax^3 +bx^2+cx+d. where a,b,c,d ER, intersect at 2 points P and Q. These points are also two points of tangency for the two tangent lines drawn from point A(2,9) upon the parobala. The graph of the cubic function has a y-intercept at (0,-1) and an x intercept at (-4,0). What is the value of the coefficient "b" in the equation of the given cubic function.
For the following functions f and g : f(x, y) = e^ax − (1 − a)lny...
For the following functions f and g : f(x, y) = e^ax − (1 − a)lny a > 0 g(x, y, z) = −3x^2 − 3y^2 − 3z^2 + 2xy + 2xz + 2yz 1. Calculate the Hessian matrices of f and g noted Hf (x, y) and Hg(x, y, z) 2. Show that Hg(x, y, z) is define negativly for all (x, y, z) ∈ Dg 3. For what value o a is , Hf (x, y) define positivly...
The flow of a vector field is F=(x-y)i+(x^2-y)j along the straight line C from the origin...
The flow of a vector field is F=(x-y)i+(x^2-y)j along the straight line C from the origin to the point (3/5, -4/5) A. Express the flow described above as a single variable integral. B. Then compute the flow using the expression found in part A. Please show all work.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT