Question

In: Physics

A highway curve with a radius of 450 m is banked properly for a car traveling...

A highway curve with a radius of 450 m is banked properly for a car traveling 80 km/h. If a 1560- kg Porshe 928S rounds the curve at 250 km/h, how much sideways force must the tires exert against the road if the car does not skid?

Solutions

Expert Solution

if the highway curve was made properly for a car traveling 80km/h, then we can say that the car is traveling too fast (3 times the top allowed speed). However, the speed the car describes (seeing from outside the road) is a speed tangential to the curve, which means that the car will experience a centrifugal force (so it will experience a centripetal force). This force (aplying the Second Law of Newton) is given by the following:

Using the fact that the top allowed speed is equals 80km/h (22.22m/s), the mass of the car is equals 1560Kg and the radius of the curve is equals 450m, we can find the centrifugal force that WILL NOT make the car skid on the road. This is:

However, this car is traveling at a lineal speed equals 250km/h (69.44m/s). The centripetal force will be equals:

if the car at this speed does not skid, then the tires have to exert a sideways force against the road equals 15Nw approximately


Related Solutions

A concrete highway curve of radius 84 m is banked at a 15.3 degree angle. What...
A concrete highway curve of radius 84 m is banked at a 15.3 degree angle. What is the maximum speed with which a 1500 kg rubber-tired car can take this curve without sliding? First of all, what is the relevant coefficient of friction? (It's 1) What is the magnitude of the normal force acting on the car? What is the maximum speed the car can take this curve without sliding? Does this maximum speed depend on the mass of the...
A curve of radius 30 m is banked so that a 950 kg car travelling at...
A curve of radius 30 m is banked so that a 950 kg car travelling at 40 km/h can go round it even if the road is so icy that the coefficient of static friction is approximately zero. You are commissioned to tell the local police the range of speeds at which a car can travel around this curve without skidding. Neglect the effects of air drag and rolling friction. If the coefficient of static friction is 0.3, what is...
If a curve with a radius of 81 m is properly a curve of a radius...
If a curve with a radius of 81 m is properly a curve of a radius 74 m is banked for a design speed of 100 km/h if the coefficient of static friction is 0.40 at what range of speed can a car safely make the curve a curve of radius 74 m is banked for a design speed of 100 km/h if the coefficient of friction is 0.40 (wet pavement), at what range of speeds can a car safely...
A curve of radius 90 m is banked for a design speed of 100 km/h. If...
A curve of radius 90 m is banked for a design speed of 100 km/h. If the coefficient of static friction is 0.30 (wet pavement), at what range of speeds can a car safely make the curve?
A curve of radius 69 m is banked for a design speed of 78 km/h. If...
A curve of radius 69 m is banked for a design speed of 78 km/h. If the coefficient of static friction is 0.30 (wet pavement), at what range of speeds can a car safely make the curve? [Hint: Consider the direction of the friction force when the car goes too slow or too fast.]
A curve of radius 69 m is banked for a design speed of 80 km/h ....
A curve of radius 69 m is banked for a design speed of 80 km/h . if the coefficient of static friction is 0.33 (wet pavement) at what range of speeds can a car safely make the curve?
A curve of radius 40 m is banked for a design speed of 60 km/h. If...
A curve of radius 40 m is banked for a design speed of 60 km/h. If the coefficient of static friction is 0.30 (wet pavement), at what range of speeds can a car safely make the curve? minimum maximum
A curve of radius 70 m is banked for a design speed of 100 km/h ....
A curve of radius 70 m is banked for a design speed of 100 km/h . If the coefficient of static friction is 0.33 (wet pavement), at what range of speeds can a car safely make the curve?
a curve of radius 68 m is banked for a design speed of 85 km/h. If...
a curve of radius 68 m is banked for a design speed of 85 km/h. If the coefficient of static friction is 0.40 (wet pavement), at what range of speeds can a car safely make the curve? [Hint: Consider the direction of the friction force when the car goes too slow or too fast.] EXPRESS answer in km/h
4. A car of mass m is traveling with constant speed v around a circular banked...
4. A car of mass m is traveling with constant speed v around a circular banked road of radius R, see the side view and the free-body diagram. a) Apply Newton’s 2nd law to the car, i.e. write equations for the centripetal, angular, and vertical components of the net force. b) Determine the angle θ at which the road should be banked so that no static friction is required to drive the car. Now, include the static friction force FS...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT