Solution
(a) Are there matrices A,B∈Mn(R)">A,B∈Mn(R)A,B∈Mn(R) such that AB−BA=I">AB−BA=IAB−BA=I. we haveAB−BA=IA2B−BA2=IA2B2−B2A2=ABAB(I−AB)=B2A2AB(AB−BA−AB)=B2A2AB(−BA)=B2A2">AB−BA=IA2B−BA2=IA2B2−B2A2=ABAB(I−AB)=B2A2AB(AB−BA−AB)=B2A2AB(−BA)=B2A2AB−BA=IA2B−BA2=IA2B2−B2A2=ABAB(I−AB)=B2A2AB(AB−BA−AB)=B2A2AB(−BA)=B2A2Therefore, A,B∈Mn(R)">A,B∈Mn(R)A,B∈Mn(R) such that AB−BA=I◼">AB−BA=I■AB−BA=I◼
(b) Suppose that A,B∈Mn(R)">A,B∈Mn(R)A,B∈Mn(R) such that (AB−BA)2=AB−BA">(AB−BA)2=AB−BA(AB−BA)2=AB−BA. Show that A">AA and \par B">BB are commutable. we have ⇔(AB−BA)(AB−BA−I)=0">⇔(AB−BA)(AB−BA−I)=0⇔(AB−BA)(AB−BA−I)=0 From (a)⇒AB−BA=0⇒AB=BA">(a)⇒AB−BA=0⇒AB=BA(a)⇒AB−BA=0⇒AB=BA ThenAB−BA=(AB−BA)(AB−BA)=ABBA−ABBA−BAAB+BABA=(AB)2−AB2A−BA2B+(BA)2">AB−BA=(AB−BA)(AB−BA)=ABBA−ABBA−BAAB+BABA=(AB)2−AB2A−BA2B+(BA)2AB−BA=(AB−BA)(AB−BA)=ABBA−ABBA−BAAB+BABA=(AB)2−AB2A−BA2B+(BA)2Therfore, A">AA and B">BB are commutable (AB−BA)2=AB−BA◼">(AB−BA)2=AB−BA■