Question

In: Advanced Math

Linear algebra

(a) Are there matrices A,BMn(R)">A,B∈Mn(R) such that ABBA=I">AB−BA=I.

(b) Suppose that A,BMn(R)">A,B∈Mn(R) such that (ABBA)2=ABBA">(AB−BA)2=AB−BA. Show that A">A and B">B are commutable.

Solutions

Expert Solution

Solution

(a) Are there matrices A,BMn(R)">A,B∈Mn(R) such that ABBA=I">AB−BA=I. we haveABBA=IA2BBA2=IA2B2B2A2=ABAB(IAB)=B2A2AB(ABBAAB)=B2A2AB(BA)=B2A2">AB−BA=IA2B−BA2=IA2B2−B2A2=ABAB(I−AB)=B2A2AB(AB−BA−AB)=B2A2AB(−BA)=B2A2Therefore, A,BMn(R)">A,B∈Mn(R) such that ABBA=I">AB−BA=I◼ 

(b) Suppose that A,BMn(R)">A,B∈Mn(R) such that (ABBA)2=ABBA">(AB−BA)2=AB−BA. Show that A">A and \par B">B are commutable. we have (ABBA)(ABBAI)=0">⇔(AB−BA)(AB−BA−I)=0 From (a)ABBA=0AB=BA">(a)⇒AB−BA=0⇒AB=BA ThenABBA=(ABBA)(ABBA)=ABBAABBABAAB+BABA=(AB)2AB2ABA2B+(BA)2">AB−BA=(AB−BA)(AB−BA)=ABBA−ABBA−BAAB+BABA=(AB)2−AB2A−BA2B+(BA)2Therfore, A">A and B">B are commutable (ABBA)2=ABBA">


Related Solutions

Linear algebra Matrix
Let A ∈ Mn(R) such that I + A is invertible. Suppose that                                     B = (I − A)(I + A)-1(a) Show that B = (I + A)−1(I − A)(b) Show that I + B is invertible and express A in terms of B.
Linear algebra matrix
Exercise 13. Let A = (aij)n ∈ Mn(R) where aij = cos(i + j) for i, j = 1, 2, . . . ,n. Find rank(A).
Linear algebra Matrix
Exercise 11. Find the rank of matrix A where A, B and C
Linear algebra Determinant
Exercise 2. In S8, write the following permutations into cyclic form, then determine their signature.(a) 85372164                  (b) 87651234                     (c) 12435687
Linear algebra Determinant
Exercise 4. For n\inN* , compute the signature of the following permutations.
Linear algebra Determinants
Exercise 7. Let A and B be invertible matrices. Show that
Linear algebra Determinants
Exercise 16. Let n\in N − {0, 1} and                                      (a) Show that A is invertible and express A-1 in terms of n, I and A.(b) Calculate |A|(c) Determine adj(A) and | adj(A)|.(d) Calculate Am,m\in N.
Linear algebra Matrix
excerses. Find the matrix X ∈ M2(R) satisfies the equation                 
Linear algebra matrix
Exercise 14. Find the inverse of each matrix (if exists) below: 
Linear algebra matrix
Exercise 15. Solve the system of linear equation unknow
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT