In: Math
create a histogram of with the data. One relatively easy way to do this is to divide the counts into 10 groups, say, each of length: (max length - min length)/10. Then compute the frequency of the data in each bin, and plot.
data: 143.344, 178.223, 165.373, 154.768, 155.56, 163.88, 178.99, 145.764, 174.974, 136.88, 173.84, 174.88, 197.091, 183.222, 138.233
please show work
Maximum value of observation = 197.091
Minimum value of observation = 136.88
k = number of classes = 10
class width of each class =length of each class = (197.091 - 136.88) /10 = 6.0211 =6 (approximately)
Classes are 137-143, 143-149, 149-155,155-161,161-167,167-173,173-179,179-185,185-191,191-197
X | Approximate X |
136.88 | 137 |
138.233 | 138 |
143.344 | 143 |
145.764 | 146 |
154.768 | 155 |
155.56 | 156 |
163.88 | 164 |
165.373 | 165 |
173.84 | 174 |
174.88 | 175 |
174.974 | 175 |
178.223 | 178 |
178.99 | 179 |
183.222 | 183 |
197.091 | 197 |
Frequency distribution is
Class | Frequency |
137-143 | 2 |
143-149 | 2 |
149-155 | 1 |
155-161 | 1 |
161-167 | 2 |
167-173 | 0 |
173-179 | 5 |
179-185 | 1 |
185-191 | 0 |
191-197 | 1 |
Total | 15 |
By using R
> l=seq(137,191,6)
> u=seq(143,197,6)
> x=(l+u)/2
> f=c(2,2,1,1,2,0,5,1,0,1)
> y=rep(x,f)
> b=seq(137,197,6)
> hist(y,breaks=b,xlab="Class interval",ylab="f(x)")
Histogram