In: Statistics and Probability
6.) A random sample of 15 females aged 19-50 was taken to
measure their daily iron intake. Their mean daily iron intake was
16.2 mg with a standard deviation of 4.7 mg.
(a) (10 pts) Find a 95% confindence interval for the mean daily
iron intake of all females aged 19-50.
(b) (5 pts) Based upon the confidence interval you found in part (a), would you conclude that the mean daily iron intake of all females aged 19-50 is 19mg? Explain your reasoning.
Solution:
Given:
Sample size = n = 15
Sample mean = mg
Sample standard deviation = mg
Part a) Find a 95% confidence interval for the mean daily iron intake of all females aged 19-50.
Formula:
where
tc is t critical value for c = 95% confidence level
Thus two tail area = 1 - c = 1 - 0.95 = 0.05
df = n - 1 = 15 - 1 = 14
Look in t table for df = 14 and two tail area = 0.05 and
find t critical value
tc = 2.145
thus
thus
( Round final answer to
specified number of decimal places)
Part b) Based upon the confidence interval you found in part (a), would you conclude that the mean daily iron intake of all females aged 19-50 is 19 mg? Explain your reasoning.
Since both the limits of 95% confidence interval for the mean daily iron intake of all females aged 19-50 are less than claimed mean of 19 mg, we can not conclude that the mean daily iron intake of all females aged 19-50 is 19 mg.