In: Electrical Engineering
For the integration of distributed generation with utility provide the different methods of integration at least 3 (plz type your answer)?
Answer.
Distributed energy resource (DER) systems are small-scale power generation or storage technologies (typically in the range of 1 kW to 10,000 kW)used to provide an alternative to or an enhancement of the traditional electric power system.
DER systems are decentralized, modular, and more flexible technologies that are located close to the load they serve. These systems can comprise multiple generation and storage components; in this instance, they are referred to as hybrid power systems.
A grid-connected device for electricity storage can also be classified as a DER system and is often called a distributed energy storage system (DESS). By means of an interface, DER systems can be managed and coordinated within a smart grid. Distributed generation and storage enables the collection of energy from many sources and may lower environmental impacts and improve the security of supply.
DER systems may include the following devices or technologies:
Cogeneration:
Distributed cogeneration sources use steam turbines, natural gas-fired fuel cells, microturbines or reciprocating engines to turn generators. The hot exhaust is then used for space or water heating, or to drive an absorptive chiller for cooling such as air-conditioning. In addition to natural gas-based schemes, distributed energy projects can also include other renewable or low carbon fuels including biofuels, biogas, landfill gas, sewage gas, coal bed methane, syngasand associated petroleum gas.
Solar power
Photovoltaics, by far the most important solar technology for distributed generation of solar power, uses solar cells assembled into solar panels to convert sunlight into electricity. It is a fast-growing technology doubling its worldwide installed capacity every couple of years. PV systems range from distributed, residential, and commercial roof top or building integrated installations to large centralized utility-scale photovoltaic power stations.As most renewable energy sources and unlike coal and nuclear, solar PV is variable and non-dispatchable, but has no fuel costs, operating pollution, as well as greatly reduced mining-safety and operating-safety issues.
Wind power
Wind turbines can be distributed energy resources or they can be built at utility scale. These have low maintenance and low pollution, but distributed wind unlike utility-scale wind has much higher costs than other sources of energy. As with solar, wind energy is variable and non-dispatchable. Wind towers and generators have substantial insurable liabilities caused by high winds, but good operating safety. Distributed generation from wind hybrid power systems combines wind power with other DER systems. One such example is the integration of wind turbines into solar hybrid power systems, as wind tends to complement solar because the peak operating times for each system occur at different times of the day and year.