In: Finance
Bond X is a premium bond making semiannual payments. The bond has a coupon rate of 7.5%, a YTM of 6%, and 13 years to maturity. Bond Y is a discounted bond making semiannual payments. This bond has a coupon rate of 6%, a YTM of 7.5%, and also 13 years to maturity. What are the prices of these bonds today assuming both bonds have a $1,000 par value? If interest rates remain unchanged, what do you expect the prices of these bonds to be in 1 year? In 3 years? In 8 years? In 12 years? In 13 years? What's going on here? Illustrate your answers by graphing bond prices versus time to maturity.
Current Bond price |
X Bond |
K = Nx2 |
Bond Price =∑ [( Coupon)/(1 + YTM/2)^k] + Par value/(1 + YTM/2)^Nx2 |
k=1 |
K =13x2 |
Bond Price =∑ [(7.5*1000/200)/(1 + 6/200)^k] + 1000/(1 + 6/200)^13x2 |
k=1 |
Bond Price = 1134.08 |
Y Bond |
K = Nx2 |
Bond Price =∑ [( Coupon)/(1 + YTM/2)^k] + Par value/(1 + YTM/2)^Nx2 |
k=1 |
K =13x2 |
Bond Price =∑ [(6*1000/200)/(1 + 7.5/200)^k] + 1000/(1 + 7.5/200)^13x2 |
k=1 |
Bond Price = 876.8 |
Price in 1 year |
X Bond |
K = Nx2 |
Bond Price =∑ [( Coupon)/(1 + YTM/2)^k] + Par value/(1 + YTM/2)^Nx2 |
k=1 |
K =12x2 |
Bond Price =∑ [(7.5*1000/200)/(1 + 6/200)^k] + 1000/(1 + 6/200)^12x2 |
k=1 |
Bond Price = 1127.02 |
Y Bond |
K = Nx2 |
Bond Price =∑ [( Coupon)/(1 + YTM/2)^k] + Par value/(1 + YTM/2)^Nx2 |
k=1 |
K =12x2 |
Bond Price =∑ [(6*1000/200)/(1 + 7.5/200)^k] + 1000/(1 + 7.5/200)^12x2 |
k=1 |
Bond Price = 882.66 |
Price in 3 year |
X Bond |
K = Nx2 |
Bond Price =∑ [( Coupon)/(1 + YTM/2)^k] + Par value/(1 + YTM/2)^Nx2 |
k=1 |
K =10x2 |
Bond Price =∑ [(7.5*1000/200)/(1 + 6/200)^k] + 1000/(1 + 6/200)^10x2 |
k=1 |
Bond Price = 1111.58 |
Y Bond |
K = Nx2 |
Bond Price =∑ [( Coupon)/(1 + YTM/2)^k] + Par value/(1 + YTM/2)^Nx2 |
k=1 |
K =10x2 |
Bond Price =∑ [(6*1000/200)/(1 + 7.5/200)^k] + 1000/(1 + 7.5/200)^10x2 |
k=1 |
Bond Price = 895.78 |
Price in 8 year |
X Bond |
K = Nx2 |
Bond Price =∑ [( Coupon)/(1 + YTM/2)^k] + Par value/(1 + YTM/2)^Nx2 |
k=1 |
K =5x2 |
Bond Price =∑ [(7.5*1000/200)/(1 + 6/200)^k] + 1000/(1 + 6/200)^5x2 |
k=1 |
Bond Price = 1063.98 |
Y Bond |
K = Nx2 |
Bond Price =∑ [( Coupon)/(1 + YTM/2)^k] + Par value/(1 + YTM/2)^Nx2 |
k=1 |
K =5x2 |
Bond Price =∑ [(6*1000/200)/(1 + 7.5/200)^k] + 1000/(1 + 7.5/200)^5x2 |
k=1 |
Bond Price = 938.4 |
Price in 12 year |
X Bond |
K = Nx2 |
Bond Price =∑ [( Coupon)/(1 + YTM/2)^k] + Par value/(1 + YTM/2)^Nx2 |
k=1 |
K =1x2 |
Bond Price =∑ [(7.5*1000/200)/(1 + 6/200)^k] + 1000/(1 + 6/200)^1x2 |
k=1 |
Bond Price = 1014.35 |
Y Bond |
K = Nx2 |
Bond Price =∑ [( Coupon)/(1 + YTM/2)^k] + Par value/(1 + YTM/2)^Nx2 |
k=1 |
K =1x2 |
Bond Price =∑ [(6*1000/200)/(1 + 7.5/200)^k] + 1000/(1 + 7.5/200)^1x2 |
k=1 |
Bond Price = 985.8 |
Price in 13 year |
X Bond |
K = Nx2 |
Bond Price =∑ [( Coupon)/(1 + YTM/2)^k] + Par value/(1 + YTM/2)^Nx2 |
k=1 |
K =0x2 |
Bond Price =∑ [(7.5*1000/200)/(1 + 6/200)^k] + 1000/(1 + 6/200)^0x2 |
k=1 |
Bond Price = 1000 |
Y Bond |
K = Nx2 |
Bond Price =∑ [( Coupon)/(1 + YTM/2)^k] + Par value/(1 + YTM/2)^Nx2 |
k=1 |
K =0x2 |
Bond Price =∑ [(6*1000/200)/(1 + 7.5/200)^k] + 1000/(1 + 7.5/200)^0x2 |
k=1 |
Bond Price = 1000 |