Question

In: Physics

A 200 micro Farad capacitor is charged up by connecting it in series with a 10,000...

A 200 micro Farad capacitor is charged up by connecting it in series with a 10,000 ohm resistor and a 25 V
battery. What is the maximum amount of charge that can be stored on the capacitor in mC?

Solutions

Expert Solution

The concept used in this question is of the expression for the charging of the capacitor with respect to time , as i calculated different values of the charge stored in the capacitor at different time constant and found maximum charge stored in the capacitor as asked in the question , time constant is the time when charge stored in the capacitor is equal to 63.2 % of the maximum charge stored in the capacitor.

kindly upvote my answer ,if you like , by clicking on the like button.


Related Solutions

A capacitor with capacitance 6.00 × 10−5 is charged by connecting it to a 12.0 V...
A capacitor with capacitance 6.00 × 10−5 is charged by connecting it to a 12.0 V battery. The capacitor is disconnected from the battery and connected across an inductor with L=1.50 H. What is the initial energy stored in the capacitor? What are the angular frequency of the electrical oscillations and the period of the oscillations? What is the charge on the capacitor 0.0230 s after the capacitor is connected to the inductor? Interpret the sign of your answer. What...
A capacitor is fully charged and then connected in series to an inductor with zero resistance...
A capacitor is fully charged and then connected in series to an inductor with zero resistance wires. This is an ideal L-C circuit that will oscillate the current direction. Explain HOW and WHY this circuit oscillates and discuss energy conservation in this oscillation behavior. Your response should be at least 3 paragraphs to show your mastery of the concepts.
A capacitor is fully charged and then connected in series to an inductor with zero resistance...
A capacitor is fully charged and then connected in series to an inductor with zero resistance wires. This is an ideal L-C circuit that will oscillate the current direction. Explain HOW and WHY this circuit oscillates and discuss energy conservation in this oscillation behavior. Your response should be at least 3 paragraphs to show your mastery of the concepts.
A capacitor is fully charged and then connected in series to an inductor with zero resistance...
A capacitor is fully charged and then connected in series to an inductor with zero resistance wires. This is an ideal L-C circuit that will oscillate the current direction. Explain HOW and WHY this circuit oscillates and discuss energy conservation in this oscillation behavior. Your response should be at least 3 paragraphs to show your mastery of the concepts.
An inductor is connected in series to a fully charged capacitor. Which of the following statements...
An inductor is connected in series to a fully charged capacitor. Which of the following statements are true? Check all that apply. - As the capacitor is charging, the current is increasing. - The stored electric field energy can be greater than the stored magnetic field energy. - As the capacitor is discharging, the current is increasing. - The stored electric field energy can be less than the stored magnetic field energy. - The stored electric field energy can be...
(28) A 10-Micro Farat capacitor has been charged to a potential of 150 V. A resistor...
(28) A 10-Micro Farat capacitor has been charged to a potential of 150 V. A resistor of 25 Ohms is then connected across the capacitor through a switch. When the switch is closed for ten time constants, the total energy (joules) dissipated by the resistor is?
3.Consider a series RLC circuit. a) When the capacitor is charged and the circuit is closed,...
3.Consider a series RLC circuit. a) When the capacitor is charged and the circuit is closed, find the condition for the current to be oscillatory. b) When the circuit is connected to an AC source V = ?0 cos??, find the voltage across the inductor and the angular frequency at which the voltage across the inductor is maximized.
Capacitor C1 = 10.0 micro F is connected in series to parallel combination of capacitors C2=7.0...
Capacitor C1 = 10.0 micro F is connected in series to parallel combination of capacitors C2=7.0 microF and C3=7.5 microF. This circuit is connected to a battery delivering V=13.0 V. Find energy stored in capacitor C3 in microJ.
A 2.90 μFμF capacitor is charged to 470 VV and a 4.00 μFμF capacitor is charged...
A 2.90 μFμF capacitor is charged to 470 VV and a 4.00 μFμF capacitor is charged to 535 V. a). These capacitors are then disconnected from their batteries, and the positive plates are now connected to each other and the negative plates are connected to each other. What will be the potential difference across each capacitor? Enter your answers numerically separated by a comma. V1, V2= b). What will be the charge on each capacitor? Enter your answers numerically separated...
An 8.5 nF capacitor is charged up by a 20 V battery. The battery is removed...
An 8.5 nF capacitor is charged up by a 20 V battery. The battery is removed and replaced with a coil of wire. It then takes 7.3 x 10-5 s for this now LC circuit to undergo a full charging cycle. (a) Calculate the inductance of the coil (b) Calculate the total energy of the circuit (c) Calculate the charge on the capacitor after 1 x 10-5 s.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT