In: Finance
Requirement 1:
Let’s compute PV of each option and compare:
A)
PV = FV/(1+r) n
= $ 500/ (1+0.06)3 = $ 500/ (1.06)3
= $ 500/1.191016 = $ 419.81
B)
PV = C x [1 - (1+r)-n/r]
= $ 40 x [1 - (1+0.06)-20/0.06]
= $ 40 x [1 - (1.06)-20/0.06]
= $ 40 x [(1 - 0.311804726886084)/0.06]
= $ 40 x (0.688195273113916/0.06)
= $ 40 x 11.4699212185653
= $ 458.80
C)
PV = C /r = $ 30/0.06 = $ 500
D)
PV = C /r = $ 50/0.06 = $ 833.33
Option “D. Perpetuity of $ 50” is preferable as it has highest present value.
Requirement 2:
FV = C1 x (1+r)2 + C2/(1+r)1 + C3/(1+r)0
= $ 600 x (1+0.034)2 + $ 800 x (1+0.034)1 + $ 1,000 x (1+0.034)0
= $ 600 x (1.034)2 + $ 800 x (1.034) + $ 1,000
= $ 600 x 1.069156 + $ 800 x 1.034 + $ 1,000
= $ 641.4936 + $ 827.20 + $ 1,000
= $ 2,468.6936 or $ 2,468.69
Accumulated value at the end of year 3 is $ 2,468.69
Option “D. $ 2,468.69” is correct answer.
Requirement 3:
PV = FV/(1+r) n
= $ 150,000/ (1+0.08)17 = $ 150,000/ (1.08)17
= $ 150,000 / 3.70001805480086
= $ 40,540.3427168068 or $ 40,540.34
Mr. Bean need to save $ 40,540.34 today.
Option “A. $ 40,540.34” is correct answer.