In: Finance
What is the price (p) and duration (d) of a 6% coupon bond maturing in 20 years and paying interst annually if the current interest rate is 9%?
Select one:
A) p= 311.80, d= 9.18
B) p= 726.14, d= 10.77
C) p= 726.14, d= 11.55
D) p= 1,344.10, d= 12.43
Ans: B)p= 726.14, d= 10.77
Let the Face value of the bond be 1000. The coupon payment =1000*0.06=60
Price of a bond = Sum of PV of future cash flows
= Interest*PVAF(9%,20years) + Face value*PVAF(9%,20years)
=(60*9.1285)+(1000*.1784) =$726.14
Duration of a bond calculation:
Period | Cash Flow | Period x cash flow | PVF @ 9% | PV of cash Flow |
1 | 60 | 60 | 0.9174 | 55.05 |
2 | 60 | 120 | 0.8417 | 101.00 |
3 | 60 | 180 | 0.7722 | 138.99 |
4 | 60 | 240 | 0.7084 | 170.02 |
5 | 60 | 300 | 0.6499 | 194.98 |
6 | 60 | 360 | 0.5963 | 214.66 |
7 | 60 | 420 | 0.5470 | 229.75 |
8 | 60 | 480 | 0.5019 | 240.90 |
9 | 60 | 540 | 0.4604 | 248.63 |
10 | 60 | 600 | 0.4224 | 253.45 |
11 | 60 | 660 | 0.3875 | 255.77 |
12 | 60 | 720 | 0.3555 | 255.99 |
13 | 60 | 780 | 0.3262 | 254.42 |
14 | 60 | 840 | 0.2992 | 251.37 |
15 | 60 | 900 | 0.2745 | 247.08 |
16 | 60 | 960 | 0.2519 | 241.79 |
17 | 60 | 1020 | 0.2311 | 235.69 |
18 | 60 | 1080 | 0.2120 | 228.95 |
19 | 60 | 1140 | 0.1945 | 221.72 |
20 | 1060 | 21200 | 0.1784 | 3,782.73 |
Total | 7,822.95 |
Duration of bond = sum of weighted average cash flows of the bond/ current price of the bond
=7822.95/726.14 = 10.77