In: Statistics and Probability
1. A supervisor suggests that the old computer program for estimating delivery times be abandoned. Instead, schedulers could use an alternative such as MapQuest to estimate driving times. As a pilot study, 500 recent deliveries were randomly selected. The Excel data listed below contains the following variables:
Actual Times: actual time required to make delivery
Old Model Deviations: difference in actual delivery time and predicted delivery time using old computer prediction model
MapQuest: predicted delivery times for the randomly selected routes using MapQuest
Use the data to calculate the deviations for the MapQuest estimates (DMapQuest = actual delivery time – MapQuest predicted delivery time), then construct an appropriate graph for comparing the deviations for the Old Computer model and the MapQuest model. Interpret the results and indicate which prediction model should be used in the future. (Do NOT include the calculated deviations here. Do include the graph and interpretation.)
2. A driver reads your answer to part (1) and makes the following comment: MapQuest gives driving times for cars. Driving times for trucks will probably be longer because we can’t go as fast, especially in city traffic. Is there some way to adjust the MapQuest prediction to make it fit trucks better? Construct a fitted line plot (scatterplot with fitted linear regression line) using the MapQuest times as the predictor variable and the actual times as the response variable. Call the fitted values ‘Adjusted MapQuest’ times. Provide the fitted line plot, regression equation and R2 values associated with the ‘Adjusted MapQuest’ times. Interpret your results and indicate whether the driver’s suggestion is valid or invalid.
3. Use the regression equation given in part (2) to provide ‘Adjusted MapQuest’ times for the sample of 500 deliveries and calculate the Adjusted Deviations = Actual times - Adjusted MapQuest times. (You do NOT need to put those values here.) Construct an appropriate graph for comparing the deviations associated with the Old Computer Model, the MapQuest model and Adjusted MapQuest model and include it here. Interpret the graph and recommend the modeling tool (method of predicting delivery times) you feel is most accurate.
Actual Times |
Old Model Deviation | MapQuest |
142 | 42 | 113 |
82 | -18 | 79 |
142 | 42 | 101 |
151 | 51 | 112 |
154 | 54 | 127 |
124 | 24 | 90 |
134 | 34 | 89 |
135 | 35 | 113 |
123 | 23 | 94 |
150 | 50 | 111 |
121 | 21 | 105 |
111 | 11 | 101 |
142 | 42 | 109 |
118 | 18 | 102 |
159 | 59 | 119 |
98 | -2 | 89 |
150 | 50 | 115 |
128 | 28 | 101 |
134 | 34 | 110 |
158 | 58 | 123 |
106 | 6 | 89 |
147 | 47 | 123 |
117 | 17 | 84 |
153 | 53 | 105 |
126 | 26 | 96 |
129 | 29 | 100 |
98 | -2 | 76 |
139 | 39 | 111 |
119 | 19 | 95 |
98 | -2 | 69 |
137 | 37 | 105 |
140 | 40 | 110 |
140 | 40 | 121 |
134 | 34 | 99 |
131 | 31 | 100 |
98 | -2 | 76 |
123 | 23 | 116 |
108 | 8 | 96 |
112 | 12 | 85 |
143 | 43 | 116 |
133 | 33 | 92 |
127 | 27 | 99 |
124 | 24 | 95 |
102 | 2 | 82 |
106 | 6 | 87 |
158 | 58 | 110 |
122 | 22 | 93 |
117 | 17 | 93 |
179 | 79 | 142 |
124 | 24 | 91 |
127 | 27 | 114 |
109 | 9 | 90 |
121 | 21 | 96 |
119 | 19 | 92 |
125 | 25 | 107 |
121 | 21 | 106 |
138 | 38 | 112 |
129 | 29 | 111 |
137 | 37 | 112 |
121 | 21 | 99 |
156 | 56 | 110 |
142 | 42 | 113 |
112 | 12 | 89 |
105 | 5 | 85 |
142 | 42 | 114 |
142 | 42 | 118 |
137 | 37 | 107 |
94 | -6 | 79 |
132 | 32 | 115 |
112 | 12 | 98 |
97 | -3 | 85 |
140 | 40 | 112 |
126 | 26 | 106 |
131 | 31 | 98 |
93 | -7 | 81 |
161 | 61 | 115 |
113 | 13 | 87 |
108 | 8 | 81 |
117 | 17 | 102 |
147 | 47 | 108 |
113 | 13 | 98 |
92 | -8 | 83 |
136 | 36 | 106 |
118 | 18 | 88 |
120 | 20 | 84 |
82 | -18 | 68 |
139 | 39 | 111 |
121 | 21 | 101 |
157 | 57 | 129 |
150 | 50 | 110 |
133 | 33 | 95 |
118 | 18 | 107 |
115 | 15 | 93 |
144 | 44 | 110 |
124 | 24 | 110 |
110 | 10 | 77 |
145 | 45 | 112 |
172 | 72 | 123 |
111 | 11 | 88 |
134 | 34 | 106 |
131 | 31 | 103 |
118 | 18 | 116 |
122 | 22 | 100 |
118 | 18 | 93 |
132 | 32 | 108 |
109 | 9 | 100 |
100 | 0 | 83 |
111 | 11 | 97 |
109 | 9 | 82 |
141 | 41 | 102 |
124 | 24 | 108 |
85 | -15 | 67 |
126 | 26 | 97 |
140 | 40 | 114 |
121 | 21 | 102 |
148 | 48 | 118 |
110 | 10 | 92 |
164 | 64 | 127 |
136 | 36 | 106 |
138 | 38 | 107 |
142 | 42 | 100 |
112 | 12 | 96 |
129 | 29 | 94 |
151 | 51 | 112 |
122 | 22 | 97 |
100 | 0 | 73 |
124 | 24 | 98 |
141 | 41 | 115 |
126 | 26 | 106 |
120 | 20 | 92 |
105 | 5 | 97 |
144 | 44 | 92 |
136 | 36 | 107 |
99 | -1 | 94 |
97 | -3 | 102 |
93 | -7 | 86 |
132 | 32 | 97 |
130 | 30 | 108 |
89 | -11 | 76 |
107 | 7 | 82 |
128 | 28 | 91 |
108 | 8 | 98 |
134 | 34 | 101 |
122 | 22 | 93 |
135 | 35 | 105 |
118 | 18 | 95 |
121 | 21 | 98 |
98 | -2 | 78 |
104 | 4 | 82 |
117 | 17 | 83 |
135 | 35 | 112 |
175 | 75 | 131 |
120 | 20 | 113 |
94 | -6 | 81 |
106 | 6 | 95 |
132 | 32 | 110 |
116 | 16 | 98 |
137 | 37 | 99 |
81 | -19 | 73 |
122 | 22 | 93 |
101 | 1 | 85 |
126 | 26 | 111 |
148 | 48 | 116 |
136 | 36 | 109 |
90 | -10 | 85 |
135 | 35 | 102 |
138 | 38 | 111 |
158 | 58 | 125 |
118 | 18 | 94 |
120 | 20 | 91 |
165 | 65 | 123 |
116 | 16 | 104 |
117 | 17 | 90 |
137 | 37 | 99 |
123 | 23 | 110 |
144 | 44 | 109 |
159 | 59 | 126 |
114 | 14 | 104 |
101 | 1 | 93 |
114 | 14 | 98 |
101 | 1 | 81 |
122 | 22 | 87 |
168 | 68 | 133 |
111 | 11 | 104 |
147 | 47 | 122 |
130 | 30 | 106 |
131 | 31 | 105 |
117 | 17 | 102 |
113 | 13 | 102 |
125 | 25 | 98 |
123 | 23 | 96 |
126 | 26 | 113 |
92 | -8 | 78 |
136 | 36 | 106 |
124 | 24 | 95 |
153 | 53 | 131 |
91 | -9 | 87 |
135 | 35 | 102 |
129 | 29 | 94 |
123 | 23 | 97 |
150 | 50 | 115 |
145 | 45 | 105 |
103 | 3 | 86 |
127 | 27 | 104 |
122 | 22 | 92 |
119 | 19 | 92 |
117 | 17 | 97 |
136 | 36 | 107 |
85 | -15 | 70 |
106 | 6 | 84 |
111 | 11 | 89 |
166 | 66 | 119 |
124 | 24 | 112 |
163 | 63 | 122 |
154 | 54 | 104 |
134 | 34 | 93 |
100 | 0 | 83 |
109 | 9 | 82 |
125 | 25 | 105 |
72 | -28 | 79 |
93 | -7 | 86 |
148 | 48 | 110 |
70 | -30 | 70 |
125 | 25 | 93 |
163 | 63 | 119 |
111 | 11 | 94 |
111 | 11 | 84 |
124 | 24 | 111 |
117 | 17 | 98 |
148 | 48 | 109 |
152 | 52 | 118 |
112 | 12 | 94 |
115 | 15 | 82 |
89 | -11 | 87 |
124 | 24 | 88 |
126 | 26 | 104 |
133 | 33 | 103 |
131 | 31 | 107 |
178 | 78 | 134 |
69 | -31 | 63 |
129 | 29 | 100 |
119 | 19 | 96 |
106 | 6 | 95 |
163 | 63 | 132 |
160 | 60 | 135 |
107 | 7 | 96 |
118 | 18 | 87 |
130 | 30 | 111 |
123 | 23 | 102 |
133 | 33 | 112 |
139 | 39 | 123 |
115 | 15 | 104 |
101 | 1 | 89 |
152 | 52 | 123 |
117 | 17 | 105 |
110 | 10 | 86 |
130 | 30 | 98 |
138 | 38 | 117 |
111 | 11 | 85 |
123 | 23 | 98 |
99 | -1 | 87 |
149 | 49 | 107 |
130 | 30 | 95 |
161 | 61 | 121 |
157 | 57 | 123 |
86 | -14 | 76 |
108 | 8 | 98 |
128 | 28 | 92 |
112 | 12 | 88 |
149 | 49 | 104 |
127 | 27 | 96 |
93 | -7 | 82 |
136 | 36 | 105 |
119 | 19 | 93 |
118 | 18 | 90 |
114 | 14 | 89 |
146 | 46 | 105 |
106 | 6 | 83 |
94 | -6 | 74 |
129 | 29 | 112 |
133 | 33 | 97 |
156 | 56 | 125 |
151 | 51 | 122 |
108 | 8 | 87 |
84 | -16 | 74 |
127 | 27 | 91 |
150 | 50 | 103 |
137 | 37 | 107 |
112 | 12 | 97 |
124 | 24 | 103 |
101 | 1 | 77 |
125 | 25 | 98 |
122 | 22 | 92 |
117 | 17 | 91 |
136 | 36 | 110 |
110 | 10 | 86 |
123 | 23 | 116 |
129 | 29 | 102 |
128 | 28 | 105 |
126 | 26 | 105 |
141 | 41 | 104 |
113 | 13 | 99 |
127 | 27 | 98 |
137 | 37 | 96 |
112 | 12 | 93 |
159 | 59 | 124 |
148 | 48 | 108 |
111 | 11 | 90 |
133 | 33 | 113 |
118 | 18 | 104 |
157 | 57 | 108 |
118 | 18 | 98 |
147 | 47 | 125 |
118 | 18 | 94 |
125 | 25 | 109 |
110 | 10 | 85 |
105 | 5 | 97 |
75 | -25 | 74 |
130 | 30 | 100 |
127 | 27 | 110 |
93 | -7 | 70 |
123 | 23 | 99 |
114 | 14 | 94 |
159 | 59 | 129 |
113 | 13 | 108 |
89 | -11 | 78 |
131 | 31 | 102 |
154 | 54 | 138 |
90 | -10 | 74 |
98 | -2 | 87 |
139 | 39 | 114 |
136 | 36 | 107 |
103 | 3 | 76 |
114 | 14 | 96 |
126 | 26 | 98 |
147 | 47 | 117 |
101 | 1 | 74 |
133 | 33 | 92 |
143 | 43 | 109 |
110 | 10 | 95 |
98 | -2 | 89 |
121 | 21 | 88 |
113 | 13 | 91 |
149 | 49 | 123 |
128 | 28 | 97 |
133 | 33 | 103 |
116 | 16 | 94 |
176 | 76 | 124 |
117 | 17 | 99 |
118 | 18 | 99 |
92 | -8 | 89 |
96 | -4 | 77 |
126 | 26 | 90 |
81 | -19 | 72 |
139 | 39 | 108 |
107 | 7 | 93 |
76 | -24 | 64 |
133 | 33 | 107 |
109 | 9 | 79 |
137 | 37 | 111 |
127 | 27 | 101 |
136 | 36 | 103 |
134 | 34 | 95 |
100 | 0 | 83 |
103 | 3 | 88 |
106 | 6 | 75 |
125 | 25 | 101 |
120 | 20 | 101 |
127 | 27 | 94 |
129 | 29 | 99 |
148 | 48 | 110 |
108 | 8 | 92 |
123 | 23 | 106 |
136 | 36 | 118 |
162 | 62 | 116 |
113 | 13 | 81 |
136 | 36 | 108 |
119 | 19 | 96 |
135 | 35 | 113 |
144 | 44 | 91 |
166 | 66 | 124 |
143 | 43 | 114 |
90 | -10 | 74 |
146 | 46 | 111 |
167 | 67 | 124 |
128 | 28 | 107 |
125 | 25 | 96 |
112 | 12 | 93 |
151 | 51 | 122 |
73 | -27 | 76 |
125 | 25 | 104 |
116 | 16 | 94 |
116 | 16 | 101 |
103 | 3 | 100 |
104 | 4 | 86 |
133 | 33 | 104 |
166 | 66 | 119 |
125 | 25 | 107 |
148 | 48 | 108 |
147 | 47 | 117 |
85 | -15 | 78 |
123 | 23 | 95 |
98 | -2 | 91 |
145 | 45 | 120 |
148 | 48 | 115 |
101 | 1 | 80 |
131 | 31 | 110 |
115 | 15 | 90 |
99 | -1 | 84 |
146 | 46 | 120 |
129 | 29 | 107 |
91 | -9 | 77 |
116 | 16 | 92 |
126 | 26 | 92 |
90 | -10 | 69 |
125 | 25 | 92 |
143 | 43 | 101 |
114 | 14 | 94 |
144 | 44 | 107 |
76 | -24 | 82 |
124 | 24 | 97 |
151 | 51 | 123 |
133 | 33 | 101 |
103 | 3 | 91 |
103 | 3 | 97 |
124 | 24 | 108 |
96 | -4 | 77 |
132 | 32 | 107 |
142 | 42 | 108 |
136 | 36 | 110 |
124 | 24 | 104 |
146 | 46 | 123 |
97 | -3 | 83 |
99 | -1 | 90 |
118 | 18 | 81 |
117 | 17 | 101 |
135 | 35 | 116 |
151 | 51 | 123 |
124 | 24 | 88 |
115 | 15 | 92 |
142 | 42 | 111 |
92 | -8 | 90 |
117 | 17 | 88 |
148 | 48 | 116 |
146 | 46 | 114 |
167 | 67 | 122 |
114 | 14 | 91 |
149 | 49 | 109 |
123 | 23 | 102 |
111 | 11 | 100 |
106 | 6 | 92 |
126 | 26 | 103 |
148 | 48 | 117 |
108 | 8 | 83 |
108 | 8 | 85 |
166 | 66 | 137 |
140 | 40 | 103 |
119 | 19 | 85 |
126 | 26 | 94 |
132 | 32 | 92 |
141 | 41 | 118 |
157 | 57 | 127 |
142 | 42 | 112 |
145 | 45 | 100 |
81 | -19 | 77 |
119 | 19 | 112 |
153 | 53 | 112 |
97 | -3 | 78 |
123 | 23 | 91 |
121 | 21 | 91 |
121 | 21 | 89 |
120 | 20 | 106 |
104 | 4 | 83 |
97 | -3 | 70 |
159 | 59 | 122 |
106 | 6 | 83 |
180 | 80 | 134 |
144 | 44 | 108 |
152 | 52 | 120 |
120 | 20 | 98 |
126 | 26 | 102 |
101 | 1 | 89 |
131 | 31 | 109 |
94 | -6 | 86 |
106 | 6 | 79 |
124 | 24 | 95 |
145 | 45 | 118 |
168 | 68 | 111 |
123 | 23 | 95 |
130 | 30 | 95 |
113 | 13 | 94 |
137 | 37 | 110 |
90 | -10 | 90 |
93 | -7 | 79 |
147 | 47 | 112 |
146 | 46 | 108 |
125 | 25 | 97 |
128 | 28 | 99 |
132 | 32 | 97 |
119 | 19 | 77 |
1. If you observe the following graph it is evident that dmapquest values are varying less. Hence MapQuest can be used to predict the delivery times in the future.2.The regression equation is actual time = - 0.98 + 1.26*mapquest with R2 = 0.76.
Below I m producing the anlysis from regression.
Predictor Coef SE Coef T P
Constant -0.977 3.200 -0.31 0.760
mapquest 1.26021 0.03177 39.66 0.000
You can observe that the regression coefficient is significant approving the driver's claim and need of adjustment.
Now in the following graph one can observe that the variation in the 'adjusted deviation' is minimum and its varying around zero unlike 'old model deviation' and 'dmapquest'.
Hence, reaching to the concluson MapQuest can be used to used to predict the delivery time with adjustment provided by regression equation given above.