In: Statistics and Probability
A survey of the commercial activities was conducted for five
zones in an analysis area. The data were collected based on three
types of employment, namely manufacturing, retail and service, and
others. The resulted zonal employment of three different commercial
types and their respective trip attractions are listed in the
following table.
Zonal Employment
Trip Attraction Zone Manuf. Ret&Ser Others Total X1 X2 X3 X Y 1
6820 2547 115 9482 9428 2 111 1899 0 2010 2192 3 228 87 259 574 330
4 0 127 0 127 153 5 2729 813 294 3836 3948
a) Determine a single linear regression equation between dependent
variable Y and each of independent variables X, X1, X2, and X3.
(The use of Excel or a similar tool is suggested, but the manual
calculation is acceptable.) b) Determine a multiple linear
regression equation between dependent variable Y and independent
variables X1, X2, and X3. (The use of Excel or a similar tool is
suggested.) c) Summarize the constants and coefficients of
variables and coefficients of correlation derived from a) and b)
into a single table. Select the equations that might be acceptable
for use in trip generation and give the reasons
using R
x1 <- c( 6820,111,228,0,2729)
x2 <- c(2547 , 1899 , 87 , 127 , 813)
x3 <- c( 115,0,259,0,294)
> x <- c(9482,2010,574,127,1836)
> model <- lm (y~x)
> summary(model)
Call:
lm(formula = y ~ x)
Residuals:
1
2
3
4 5
1.624 -13.327 4.721 2.425
4.557
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 5.6594628 5.0592008 1.119
0.345
x
-0.0006627 0.0011447 -0.579 0.603
Residual standard error: 8.741 on 3 degrees of freedom
Multiple R-squared: 0.1005, Adjusted R-squared:
-0.1993
F-statistic: 0.3352 on 1 and 3 DF, p-value: 0.6032
model1 <- lm (y~x1)
> summary(model1)
Call:
lm(formula = y ~ x1)
Residuals:
1
2
3
4 5
-2.110 -13.066 5.951 3.918
5.307
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 4.0818353 5.1526688 0.792
0.486
x1 -0.0001425
0.0015676 -0.091 0.933
Residual standard error: 9.203 on 3 degrees of freedom
Multiple R-squared: 0.002748, Adjusted R-squared: -0.3297
F-statistic: 0.008265 on 1 and 3 DF, p-value: 0.9333
model2 <- lm (y~x2)
> summary(model2)
Call:
lm(formula = y ~ x2)
Residuals:
1
2
3
4 5
5.1300 -8.4080 0.6986 -1.0830 3.6625
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 9.776418 4.101619
2.384 0.0973 .
x2
-0.005460 0.002794 -1.954 0.1456
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 6.112 on 3 degrees of freedom
Multiple R-squared: 0.5601, Adjusted R-squared:
0.4135
F-statistic: 3.82 on 1 and 3 DF, p-value: 0.1456
model3 <- lm (y~x3)
> summary(model3)
Call:
lm(formula = y ~ x3)
Residuals:
1
2
3
4 5
-2.1250 -7.9513 1.6489 9.0487 -0.6214
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -1.04873 4.68043
-0.224 0.837
x3
0.03629 0.02563
1.416 0.252
Residual standard error: 7.135 on 3 degrees of freedom
Multiple R-squared: 0.4006, Adjusted R-squared:
0.2008
F-statistic: 2.005 on 1 and 3 DF, p-value: 0.2517
b)
model_mult <- lm (y~x1+x2+x3)
> summary(model_mult)
Call:
lm(formula = y ~ x1 + x2 + x3)
Residuals:
1
2
3
4 5
-0.004109 0.001059 -0.010807 0.002729 0.011128
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 9.234e+00 1.731e-02 533.62 0.001193 **
x1
2.360e-03 4.813e-06 490.38 0.001298 **
x2 -9.741e-03
1.323e-05 -736.43 0.000864 ***
x3
4.192e-03 7.572e-05 55.37 0.011497 *
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 0.01631 on 1 degrees of freedom
Multiple R-squared:
1, Adjusted
R-squared: 1
F-statistic: 3.192e+05 on 3 and 1 DF, p-value: 0.001301
c) make table yourself ,
all results are given.