In: Economics
5) Derive the demand function for x1 and x2 for each of the following utility functions.
a. U(x1,x2) = 5x1x2
b. U(x1,x2) = x1/31 x2/32
c. U(x1,x2) = x1 + 3x2
d. U(x1,x2) = {x12x2}
Budget equation is
I=p1x1+p2x2
Utility function: U(x1,x2)=5x1*x2
Utility will be maximised when Marginal Rate of SUbstitution equals to price ratio
MRS=dU1/dU2=p1/p2
dU/dx1=5x2; dU/dx2=5x1
MRS=x2/x1=p1/p2
x1=(p2*x2/p1)
Using this expression into budget equation
I=p1(p2*x2/p1)+p2*x2
I=2p2*x2
x2=I/2p2 and x1=I/2p1
(x1,x2)=(I/2p1,I/2p2)..Demand function for x1 and x2 respectively
Ans B)
U(x1,x2)=x1^(1/3)*x2^(2/3)
MRS=(1/3(x2/x1)^(2/3))/(2/3(x1/x2)^(1/3)=(1/2)(x2/x1)=p1/p2
x2=2x1*p1/p2
I=x1*p1+x2*p2=x1*p1+2x1*p1=3x1*p1
(1/3)(I/p1)=x1..Demand for x1
(2/3)(I/p2)=x2..Demand for x2
Ans C)
U(x1,x2)=x1+3x2
MRS=1/3=p1/p2
Hence utility maximisation depends upon the price of good . we will not have any interior solution in perfect substitutes and Consumer would consume higher good with lower price and zero amount of good with higher prices(That is corner solution)
Ans D)
U(x1,x2)=(x1*x2)
MRS=x2/x1=p1/p2
x2=p1*x1/p2
I=p1x1+p2*(p1x1/p2)=2p1*x1
x1=0.5(I/p1) and x2=0.4(I/p2)