In: Biology
The tonicity of a solution is related to its effect on the volume of a cell. Solutions that do not change the volume of a cell are said to be isotonic. A hypotonic solution causes a cell to swell, whereas a hypertonic solution causes a cell to shrink. Although it is related to osmolality, tonicity also takes into consideration the ability of the solute to cross the cell membrane.
Osmosis has several implications where medical care is concerned, particularly in the case of the storage of vitally important red blood cells. These are normally kept in a plasma solution which is isotonic to the cells when it contains specific proportions of salts and proteins. However, if red blood cells are placed in a hypotonic solution or one with a lower solute concentration than in the cells themselves, this can be highly detrimental.
Hence water, a life-giving and life-preserving substance in most cases is a killer in this context. If red blood cells were stored in pure water, osmosis would draw the water into the cells, causing them to swell and eventually burst. Similarly, if the cells were placed in a solution with a higher solute concentration or hypertonic solution, osmosis would draw water out of the cells until they shriveled.
In fact, the plasma solution used by most hospitals for storing red blood cells is slightly hypertonic relative to the cells, to prevent them from drawing in water and bursting. Physicians use a similar solution when injecting a drug intravenously into a patient. The active ingredient of the drug has to be suspended in some kind of medium, but water would be detrimental for the reasons discussed above, so instead the doctor uses a saline solution that is slightly hypertonic to the patient's red blood cells.
One vital process closely linked to osmosis is dialysis, which is critical to the survival of many victims of kidney diseases. Dialysis is the process by which an artificial kidney machine removes waste products from a patients' blood—performing the role of a healthy, normally functioning kidney. The openings in the dialyzing membrane are such that not only water but salts and other waste dissolved in the blood, pass through to a surrounding tank of distilled water. The red blood cells, on the other hand, are too large to enter the dialyzing membrane, so they return to the patient's body.