Question

In: Statistics and Probability

IQ scores are known to be normally distributed. The mean IQ score is 100 and the...

IQ scores are known to be normally distributed. The mean IQ score is 100 and the standard deviation is 15. What percent of the population has an IQ between 85 and 105. Need to solve it through Excel

Solutions

Expert Solution

Using Excel,

=NORM.DIST(105,100,15,TRUE)-NORM.DIST(85,100,15,TRUE)

=0.4719                                                                                                                                          


Related Solutions

Stanford–Binet IQ Test scores are normally distributed with a mean score of 100 and a standard...
Stanford–Binet IQ Test scores are normally distributed with a mean score of 100 and a standard deviation of 18. (b) Write the equation that gives the z score corresponding to a Stanford–Binet IQ test score. z = (x – 100 ) / 18 (c) Find the probability that a randomly selected person has an IQ test score. (Round your answers to 4 decimal places.) 1. P(x > 135) 2. P(x < 89) 3. P(71 < x < 129) − =...
Stanford–Binet IQ Test scores are normally distributed with a mean score of 100 and a standard...
Stanford–Binet IQ Test scores are normally distributed with a mean score of 100 and a standard deviation of 18. (b) Write the equation that gives the z score corresponding to a Stanford–Binet IQ test score. z = (x – 100 ) / 18 (c) Find the probability that a randomly selected person has an IQ test score. (Round your answers to 4 decimal places.) 1. P(x > 135) 2. P(x < 89) 3. P(71 < x < 129) − =...
Stanford–Binet IQ Test scores are normally distributed with a mean score of 100 and a standard...
Stanford–Binet IQ Test scores are normally distributed with a mean score of 100 and a standard deviation of 11. (b) Write the equation that gives the z score corresponding to a Stanford–Binet IQ test score. z = (x – 100 ) / 11 (c) Find the probability that a randomly selected person has an IQ test score. (Round your answers to 4 decimal places.) 1. P(x > 134) .001 2. P(x < 80) .0345 3. P(84 < x < 116)...
Assuming IQ scores are normally distributed in the population with a mean of 100 and a...
Assuming IQ scores are normally distributed in the population with a mean of 100 and a standard deviation of 16, what percentages of IQ scores are less than 120, between 110 and 130, and what IQ will place you in the top 8% of the population?
IQ test scores are normally distributed with a mean of 100 and a standard deviation of...
IQ test scores are normally distributed with a mean of 100 and a standard deviation of 15. An individual's IQ score is found to be 123. A.What percentage of individuals will score above 123? B.What percentage of individuals will score below 123? c. What percentage of individuals will score between 123 and 100? d. This individual was trying to be in the 80th percentile; did they achieve this? how can you tell? e. what can we say about someone with...
IQ scores are normally distributed with a mean of 100 and a standard deviation of 15....
IQ scores are normally distributed with a mean of 100 and a standard deviation of 15. A) If one person are randomly selected, find the probability the IQ score is greater than 112. B)If one person are randomly selected, find the probability the IQ score is less than 95. C)If one person are randomly selected, find the probability the IQ score is between 97 and 110. D) If 16 people are randomly selected, find the probability the IQ score will...
assume that IQ scores are normally distributed with a mean of 100 and a standard deviation...
assume that IQ scores are normally distributed with a mean of 100 and a standard deviation of 15. Find the probability that a randomly selected person has an IQ score less than 115. Find the probability that a randomly selected person has an IQ score greater than 118. Find the probability that a randomly selected person has an IQ score between 88 and 112.
Assume that IQ scores are normally distributed with a mean of 100 and standard deviation of...
Assume that IQ scores are normally distributed with a mean of 100 and standard deviation of 12. Find the probability that: (a) a randomly selected person has an IQ score less than 92. (b) a randomly selected person has an IQ score greater than 108.
The Intelligence Quotient (IQ) test scores are normally distributed with a mean of 100 and a...
The Intelligence Quotient (IQ) test scores are normally distributed with a mean of 100 and a standard deviation of 15. What is the probability that a person would score 130 or more on the test? A..0200 B..0500 C..0228 D..0250 What is the probability that a person would score between 85 and 115? A..6826 B..6800 C..3413 D..6587 Suppose that you enrolled in a class of 36 students, what is the probability that the class’ average IQ exceeds 130? A. almost zero...
IQ scores are normally distributed with a mean of 100 and a standard deviation of 15....
IQ scores are normally distributed with a mean of 100 and a standard deviation of 15. a) Find the proportion of the population that has an IQ higher than 94 b) Find the proportion of the population that has an IQ between 82 and 88 c) Find the IQ score that seperates the highest scoring 67% from the rest of the population Critical Values Z0.05= 1.645 Z0.025=1.96 Z0.01=2.325 Z0.005=2.575
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT