In: Finance
Consider the three bonds quoted in the following table (settlement: 2/15/94). Calculate discount factors and spot rates at six-month intervals (d1, d2, d3 and y1, y2, y3), and implied six month forward rates (f1 and f2).
Coupon Rate | Maturity | Price |
---|---|---|
67/8 | 8/15/94 | 101:20 |
51/2 | 2/15/95 | 101:18 |
45/8 | 8/15/95 | 100:21 |
Coupon Rate | Coupon per period | Maturity | Price | Cash flow at t = 0.5 | Cash flow at t = 1 | Cash flow at t = 1.5 |
(= Coupon rate / 2) x FV of $ 100 | ||||||
67/8 = 6.875% | 3.4375 | 8/15/1994 | 101.20 | 103.44 | ||
51/2 = 5.5% | 2.7500 | 2/15/1995 | 101.18 | 2.7500 | 102.75 | |
45/8 = 4.625% | 2.3125 | 8/15/1995 | 100.21 | 2.3125 | 2.3125 | 102.31 |
Price of the bond is present value of all the future payments.
Hence, 101.20 = 103.44 x d1
Hence, d1 = 101.20 / 103.44 = 0.9784
Also, d1 = 1 / (1 + y1 / 2). Hence, y1 = 2 x (1 / d1 - 1) = 4.42%
=======================
For the second bond, 101.18 = 2.75 x d1 + 102.75 x d2 = 2.75 x 0.9784 + 102.75 x d2
Hence, d2 = 0.9585
Also, d2 = (1 + y2 / 2)-2
Hence, y2 = 2 x (d2-1/2 - 1) = 2 x (0.9585-1/2 - 1) = 4.28%
=======================
For the third bond, 100.21 = 2.3125 x d1 + 2.3125 x d2 + 102.31 x d3 = 2.3125 x 0.9784 + 2.3125 x 0.9585 + 102.31 x d3
Hence, d3 = 0.9553
Also d3 = (1 + y3 / 2)-3
Hence, y3 = 2 x (d3-1/3 - 1) = 3.07%
===================
f1 = 2 x (d1 / d2 - 1) = 4.14%
f2 = 2 x (d3 / d2 - 1) = 0.68%