Question

In: Electrical Engineering

Convolve the following two signals using the INPUT side algorithm. x[n]= 1, 0, 2, 0, 0,...

Convolve the following two signals using the INPUT side algorithm.

x[n]= 1, 0, 2, 0, 0, 0, 2, 1, 0, 1

h[n]= 3, 2, 1

y[n]=?

Solutions

Expert Solution


Related Solutions

algorithm binarySearch input bottom, top: a number    a: array a[0] to a[n-1] of numbers    x: a...
algorithm binarySearch input bottom, top: a number    a: array a[0] to a[n-1] of numbers    x: a number output result: true if x in a false otherwise Sideeffect NA Plan if (top < bottom) result := false else // get the middle of the array (refining) middle := (top - bottom)/2 + bottom (refining by +1 or -1 or integer division …) // example what is midpoint between 6 and 8 // (8-6)/2 = 1 we need to add 6 to...
Consider the following algorithm. Algorithm Mystery(n) //Input: A nonnegative integer n S ← 0 for i...
Consider the following algorithm. Algorithm Mystery(n) //Input: A nonnegative integer n S ← 0 for i ← 1 to n do S ← S + i * i return S a. What does this algorithm compute? b. What is its basic operation? c. How many times is the basic operation executed? d. What is the efficiency class of this algorithm? e. Suggest an improvement, or a better algorithm altogether, and indicate its efficiency class. If you cannot do it, try...
. We have the following algorithm. Algorithm Novel(X[0..m-1, 0..m-1]) //Input: A matrix X[0..m-1, 0..m-1] of real...
. We have the following algorithm. Algorithm Novel(X[0..m-1, 0..m-1]) //Input: A matrix X[0..m-1, 0..m-1] of real numbers for i←0 to m-2 do for j←i+1 to m-1 do    if X[i,j] ≠X[j, i]        return false return true a.   What does this algorithm compute? b. What is its basic operation? c. How many times is the basic operation executed? d. What is the efficiency class of this algorithm?
2. Using matrices, create an algorithm that takes a matrix of dimension N x N and...
2. Using matrices, create an algorithm that takes a matrix of dimension N x N and feed it in a spiral shape with the sequential number from 1 to N^2. Then do an algorithm in PSEint
Given a difference equation x[n+2] + 5x[n+1]+6x[n]=n with start values x[0]= 0 and x[1]=0
Given a difference equation x[n+2] + 5x[n+1]+6x[n]=n with start values x[0]= 0 and x[1]=0
A Mystery Algorithm Input: An integer n ≥ 1 Output: ?? Find P such that 2...
A Mystery Algorithm Input: An integer n ≥ 1 Output: ?? Find P such that 2 P is the largest power of two less than or equal to n. Create a 1-dimensional table with P +1 columns. The leftmost entry is the Pth column and the rightmost entry is the 0th column. Repeat until P < 0 If 2 P ≤ n then put 1 into column P set n := n − 2 P Else put 0 into column...
Given a sequence x(n) for 0 ≤ n ≤ 3, where x(0)=4, x(1)=3, x(2)=2, and x(3)=1,...
Given a sequence x(n) for 0 ≤ n ≤ 3, where x(0)=4, x(1)=3, x(2)=2, and x(3)=1, evaluate your DFT X(k)
A Mystery Algorithm Input: An integer n ≥ 1 Output: ?? Find P such that 2^p...
A Mystery Algorithm Input: An integer n ≥ 1 Output: ?? Find P such that 2^p is the largest power of two less than or equal to n. Create a 1-dimensional table with P +1 columns. The leftmost entry is the Pth column and the rightmost entry is the 0th column. Repeat until P < 0 If 2^p≤n then put 1 into column P set n := n - 2^p Else put 0 into column P End if Subtract 1...
Consider the following algorithm, which takes as input a sequence of ?n integers ?1,?2,…,??a1,a2,…,an and produces...
Consider the following algorithm, which takes as input a sequence of ?n integers ?1,?2,…,??a1,a2,…,an and produces as output a matrix ?={???}M={mij} where ???mij is the minim term in the sequence of integers ??,??+1,…,??ai,ai+1,…,aj for ?≥?j≥i and ???=0mij=0 otherwise. for i := 1 to n for j := 1+1 to n for k:= i+1 to j m[i][j] := min(m[i][j], a[k]) end for end for end for return m a.) Show that this algorithm uses ?(?3)O(n3) comparisons to compute the matrix M....
Consider the following pseudocode for insertion-sort algorithm. The algorithm sorts an arbitrary array A[0..n − 1]...
Consider the following pseudocode for insertion-sort algorithm. The algorithm sorts an arbitrary array A[0..n − 1] of n elements. void ISORT (dtype A[ ], int n) { int i, j; for i = 1 to n – 1 {     //Insert A[i] into the sorted part A[0..i – 1]     j = i;     while (j > 0 and A[j] < A[j – 1]) {         SWAP (A[j], A[j – 1]);         j = j – 1 }     }...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT