Question

In: Statistics and Probability

The data below represent the cost in dollars that each of 40 cafeteria customers paid for...

The data below represent the cost in dollars that each of 40 cafeteria customers paid for their salad, as observed by statistics students in Fall 2018.

2.45

2.89

3.11

3.34

3.38

3.80

3.83

3.88

3.93

4.06

4.09

4.19

4.23

4.29

4.33

4.38

4.75

4.96

5.00

5.08

5.20

5.25

5.28

5.45

5.65

5.70

5.72

5.78

5.81

5.93

5.98

6.15

6.28

6.40

6.56

6.59

6.79

6.90

7.08

7.24

  • Compute the summary stats: mean, median, standard deviation, IQR, & range.
    • What can you say about the general shape of the distribution of salad costs? How do you know that?
    • Does this data set appear to contain any outliers? Explain.
  • Omit the highest and lowest costs, and recompute the summary stats.
    • Why does the median remain unchanged?
    • Why do all the measures of variability decrease?
    • Why does the mean increase slightly?

Solutions

Expert Solution

The data is enterd into excel from column A1 to A40.

Mean =AVERAGE(A1:A40)   5.04375
Median(Q2) =MEDIAN(A1:A40) 5.14
s.d. =STDEV(A1:A40) 1.241889973
Q1 =PERCENTILE(A1:A40,0.25) 4.0825
Q3 =PERCENTILE(A1:A40,0.75) 5.9425
IQR =Q3-Q1 1.86
Range =MAX(A1:A40)-MIN(A1:A40) 4.75
Q3-Q2 =Q3-Q2 0.8025
Q2-Q1 =Q2-Q1 1.0575
Inner Fence =Q1-1.5*IQR 1.2925
Outer Fence =Q3+1.5*IQR 8.7325

The shape of the distribution of the salad costs is approximately symmetric since Q3-Q2Q2-Q1.

Since the max value = 7.24 and min = 2.49, so there are no points outside the inner or outer fence. Hence there are no outliers.

After omitting the Highest and lowest costs the summary of the data is:

Mean =AVERAGE(A1:A38) 5.053157895
Median(Q2) =MEDIAN(A1:A38) 5.14
s.d. =STDEV(A1:A38) 1.148451614
Q1 =PERCENTILE(A1:A38,0.25) 4.115
Q3 =PERCENTILE(A1:A38,0.75) 5.9
IQR =Q3-Q1 1.785
Range =MAX(A1:A38)-MIN(A1:A38) 2.85

Since median does not depends on the maximum and minimum values it only depend on the number of observation. So when they are deleted though the number of observation decreases but still it is even and hence the median remains same.

measures of variability depends on the values of the dataset. So when the max and the min values are deleted naturally the mean will be clustered where most of the data lies, so decreasing the variability.


Related Solutions

The data below represent a firm’s dollars spent on advertising for a sample of 4 months...
The data below represent a firm’s dollars spent on advertising for a sample of 4 months and the firm’s sales (in units sold) for those months. month advertising expenditures (x) units sold (y) 1 $2215 543 2 $2975 664 3 $2150 538 4 $2060 575 1. What is the correct interpretation of the coefficient of determination? 2. What are expected sales if advertising spending is $3000? 3. What is the size of the error term for month 1? 4. Because...
Question 5 The data in the incomplete table below represent annual Savings (in thousands of dollars)...
Question 5 The data in the incomplete table below represent annual Savings (in thousands of dollars) and annual Income (in thousands of dollars) for a sample of 7 families in Brisbane: Annual Income X ('000 dollars) Annual Saving Y ('000 dollars) X2 Y2 XY 60 10 80 40 100 30 120 49 140 57 180 50 200 70 Total= Total= Total= .    Total= Total=    a. Complete the necessary additional columns on the above table to calculate the required...
For customers with a particular phone company, the amount that is paid monthly (in dollars) is...
For customers with a particular phone company, the amount that is paid monthly (in dollars) is normally distributed, with a mean of 83 and a standard deviation of 2.75. Find the value k such that 80% of all customers pay less than k dollars per month. Select the closest to your answer. options: 85.5 85.3 85.2 85.0 85.4 85.1
Summarizing Bivariate Data (1) The data in table below represent airline fuel cost per gallon (in...
Summarizing Bivariate Data (1) The data in table below represent airline fuel cost per gallon (in dollars) for the US domestic and international carriers with scheduled service by month from July 2014 to December 2014. Month Domestic (x) International (y) July 3 2.84 August 2.98    2.84 September 2.89 2.81 October 2.69 2.67 November 2.58 2.55 December 2.3 2.3 (a) Find the correlation coefficient value r. (b) If we wish to predict international cost using the domestic cost, identify response...
The following data represent the salaries (in thousands of dollars) of a sample of 13 employees...
The following data represent the salaries (in thousands of dollars) of a sample of 13 employees of a firm: 26.5, 23.5, 29.7, 24.8, 21.1, 24.3, 20.4, 22.7, 27.2, 23.7, 24.1, 24.8, and 28.2. Calculate the interquartile range. What does this tell you about the data? Show your work. Describe the shape of distribution of salaries of employees of the firm based on the values of the quartiles. Give a possible reason for the shape of this data set, in terms...
The following data represent a sample of the assets (in millions of dollars) of 28 credit...
The following data represent a sample of the assets (in millions of dollars) of 28 credit unions in a state. Assume that the population in this state is normally distributed with σ=3.5 million dollars. Use Excel to find the 99% confidence interval of the mean assets in millions of dollars. Round your answers to three decimal places and use ascending order. Assets 12.23 2.89 13.19 73.25 11.59 8.74 7.92 40.22 5.01 2.27 16.56 1.24 9.16 1.91 6.69 3.17 4.78 2.42...
The accompanying data represent the total travel tax​ (in dollars) for a​ 3-day business trip in...
The accompanying data represent the total travel tax​ (in dollars) for a​ 3-day business trip in 8 randomly selected cities. A normal probability plot suggests the data could come from a population that is normally distributed. A boxplot indicates there are no outliers. Complete parts​ (a) through​ (c) below. 67.62, 78.84, 69.99, 84.05, 79.24, 85.82, 100.26, 98.34 ​(a) Determine a point estimate for the population mean travel tax. A point estimate for the population mean travel tax is ​$ nothing...
The accompanying data represent the total travel tax​ (in dollars) for a​ 3-day business trip in...
The accompanying data represent the total travel tax​ (in dollars) for a​ 3-day business trip in 8 randomly selected cities. A normal probability plot suggests the data could come from a population that is normally distributed. A boxplot indicates there are no outliers. Complete parts​ (a) through​ (c) below. 68.43 78.73 69.41 84.89 79.03 87.78 101.73 98.75 ​(a) Determine a point estimate for the population mean travel tax. A point estimate for the population mean travel tax is ​$___ (Round...
The accompanying data represent the total travel tax​ (in dollars) for a​ 3-day business trip in...
The accompanying data represent the total travel tax​ (in dollars) for a​ 3-day business trip in 8 randomly selected cities. A normal probability plot suggests the data could come from a population that is normally distributed. A boxplot indicates there are no outliers. Complete parts​ (a) through​ (c) below. 68.75 79.27 69.24 84.12 80.78 86.19 100.66 99.24 ​(a) Determine a point estimate for the population mean travel tax. A point estimate for the population mean travel tax is $____ ​(Round...
The accompanying data represent the total travel tax​ (in dollars) for a​ 3-day business trip in...
The accompanying data represent the total travel tax​ (in dollars) for a​ 3-day business trip in 88 randomly selected cities. A normal probability plot suggests the data could come from a population that is normally distributed. A boxplot indicates there are no outliers. Complete parts​ (a) through​ (c) below. 67.95 79.24 69.64 84.47 79.49 87.04 100.95 97.04 ​(a) Determine a point estimate for the population mean travel tax. (b) Construct and interpret a 95% confidence interval for the mean tax...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT