Question

In: Statistics and Probability

Diastolic blood pressure measurements on American men ages 18-44 years follow approximately a normal curve with...

Diastolic blood pressure measurements on American men ages 18-44 years follow approximately a normal curve with μ = 81 mm Hg and σ =11 mm Hg. The distribution for women ages 18-44 is also approximately normal with the same SD but with a lower mean, μ =75 mm Hg. Suppose we are going to measure the diastolic blood pressure of n randomly selected men and n randomly selected women in the age group 18-44 years. Let E be the event that the difference between men and women will be found statistically significant by a t test. How large must n be in order to have Pr[ E] = 0.9? a. if we use a two tailed t test at a = 0.05? b .if we use a two tailed t test at a= 0.01? c. if we use a one tailed t test in the correct direction at a=0.05 ?

Solutions

Expert Solution


Related Solutions

Determine if there is a correlation between weight and systolic and diastolic pressure. Normal blood pressure...
Determine if there is a correlation between weight and systolic and diastolic pressure. Normal blood pressure 110/70 to 140/90 Girls Weight and pressure 1. 117 (122/79) 2. 77 (110/70) 3. 115(121/80) 4. 147 (119/79) 5. 79 (109/70) 6. 117 (125/78) 7. 60 (112/71) 8. 130 (121/80) 9. 105 (122/80) 10. 94 (120/80) Boys Weight and pressure 1. 165 (126/78) 2. 147 (125/78) 3. 160 (120/74) 4. 168 (121/76) 5. 158 (125/80) 6. 187 (140/91) 7. 170 (131/82) 8. 145 (130/80)...
Diastolic blood pressure for diabetic women has a normal distribution with unknown mean and a standard...
Diastolic blood pressure for diabetic women has a normal distribution with unknown mean and a standard deviation equal to 10 mmHg. Researchers want to know if the mean DBP of diabetic women is equal to the mean DBP among the general public, which is known to be 76 mmHg. A sample of 10 diabetic women is selected and their mean DBP is calculated as 85mmHg. a. Conduct the appropriate hypothesis test at the 0.01 significance level. b. What would a...
The ages (in years) of nine men and their systolic blood pressures (in millimetres of mercury)...
The ages (in years) of nine men and their systolic blood pressures (in millimetres of mercury) are given below. Age 16 25 39 49 22 57 22 63 75 Systolic blood pressure 109 122 143 199 118 175 118 185 199 Name the dependent and independent variables Calculate the correlation coefficient and interpret your results. Calculate the rank difference correlation coefficient Develop the regression equation for the data set.    Predict the blood pressure of a 50-year-old and a 70-year-old....
The distribution of heights of adult American men is approximately normal with mean of 69 inches...
The distribution of heights of adult American men is approximately normal with mean of 69 inches in standard deviation of 2.5 inches. a. what is the probability that a selected male is either less than 68 or greater than 70 inches b. find the probability that a selected male is between 69 and 73 inches
The ages​ (in years) of seven men and their systolic blood pressures​ (BP) are given below....
The ages​ (in years) of seven men and their systolic blood pressures​ (BP) are given below. Age 16 25 39 45 49 64 70 B.P. 109 122 143 132 199 185 199 As age increases does blood pressures​ increase? Test at alphaα ​= 0.05, level of​ significance? Hypotheses What are the null and alternative​ hypothesis? ​(Use the tool pallette for​ symbols.) nothing ​= nothing nothing nothing nothing Calculate the Test Statistic and​ P-value. Test Statistic nothing ​= nothing ​P-value p​...
The ages​ (in years) of seven men and their systolic blood pressures​ (BP) are given below....
The ages​ (in years) of seven men and their systolic blood pressures​ (BP) are given below. Age 16 25 39 45 49 64 70 B.P. 109 122 143 132 199 185 199 As age increases does blood pressures​ increase? Test at alphaα ​= 0.05, level of​ significance? Hypotheses What are the null and alternative​ hypothesis? ​(Use the tool pallette for​ symbols.) nothing ​= nothing nothing nothing nothing Calculate the Test Statistic and​ P-value. Test Statistic nothing ​= nothing ​P-value p​...
The amount of factor X is human blood is believed to follow a normal curve with...
The amount of factor X is human blood is believed to follow a normal curve with a mean of 4500 units and a standard deviation of 1000 units. What is the range of test scores that will cover the middle 75% of the population?
1. The systolic blood pressure (given in millimeters) of females has an approximately normal distribution with...
1. The systolic blood pressure (given in millimeters) of females has an approximately normal distribution with mean μ = 122 millimeters and standard deviation σ = 16 millimeters. Systolic blood pressure for females follows a normal distribution. What is the probability that a female’s systolic blood pressure is less than 90 millimeters? Round answer to 3 decimal places 2. The systolic blood pressure (given in millimeters) of females has an approximately normal distribution with mean μ = 122 millimeters and...
Suppose the systolic blood pressure (in mm) of adult males has an approximately normal distribution with...
Suppose the systolic blood pressure (in mm) of adult males has an approximately normal distribution with mean μμ =125 and standard deviation σσ =14. Create an empirical rule graph with the following: A title and label for the horizontal axis including units. Vertical lines for the mean and first 3 standard deviations in each direction with numerical labels on the horizontal axis Labels for the areas of the 8 regions separated by the vertical lines as well. Note: This may...
Suppose systolic blood pressure of 18-year-old females is approximately normally distributed with a mean of 123...
Suppose systolic blood pressure of 18-year-old females is approximately normally distributed with a mean of 123 mmHg and a variance of 615.04 mmHg. If a random sample of 18 girls were selected from the population, find the following probabilities: a) The mean systolic blood pressure will be below 109 mmHg. probability = b) The mean systolic blood pressure will be above 124 mmHg. probability = c) The mean systolic blood pressure will be between 106 and 125 mmHg. probability =...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT