Question

In: Finance

You currently have two loans outstanding: a car loan and astudent loan. The car loan...

You currently have two loans outstanding: a car loan and a student loan. The car loan requires that you pay $316 per month, starting next month for 26 more months. Your student loan is requires that you pay $103 per month, starting next month for the next 69 months. A debt consolidation company gives you the following offer: It will pay off the balances of your two loans today and then charge you $475 per month for the next 43 months, starting next month. If your investments earn 4.88% APR, compounded monthly, how much would you save or lose by taking the debt consolidation company’s offer? If you lose, state your answer with a negative sign (e.g., -25,126)

Solutions

Expert Solution

Gain or loss= (PV of Car loan+PV of Student loan)-PV of debt consolidation company

PV=Mothly Installment amount*PVAF@ r rate for n periods

PVAF=[(1+r)^n-1] / [(1+r)^n*r]

where r (monthly)=4.88/12.4067% or .004067

PVAF of Car loan installments =[(1+.004067)^26-1] / [(1+.004067)^26*.004067]

=24.6251

PVAF of Student loan installments =[(1+.004067)^69-1] / [(1+.004067)^69*.004067]

=60.0583

PVAF of Debt consolidation company installments =[(1+.004067)^69-1] / [(1+.004067)^69*.004067]

=60.0583

PV of car loan=7781.53 (i.e.316*24.6251)

PV of student loan=6186 (i.e.103*60.0583)

PV of debt consolidation loan=18703.98 (i.e.475*39.3768)

Gain or loss= (7781.53+6186)-18703.98

=-4736.45

Hence he will lose by taking the debt consolidation company's offer.


Related Solutions

You currently have two loans outstanding: a car loan and a student loan. The car loan...
You currently have two loans outstanding: a car loan and a student loan. The car loan requires that you pay $329 per month, starting next month for 28 more months. Your student loan is requires that you pay $145 per month, starting next month for the next 119 months. A debt consolidation company gives you the following offer: It will pay off the balances of your two loans today and then charge you $487 per month for the next 41...
You currently have two loans outstanding: a car loan and a student loan. The car loan...
You currently have two loans outstanding: a car loan and a student loan. The car loan requires that you pay $325 per month, starting next month for 26 more months. Your student loan is requires that you pay $87 per month, starting next month for the next 38 months. A debt consolidation company gives you the following offer: It will pay off the balances of your two loans today and then charge you $501 per month for the next 45...
You currently have two loans outstanding: a car loan and a student loan. The car loan...
You currently have two loans outstanding: a car loan and a student loan. The car loan requires that you pay $413 per month, starting next month for 28 more months. Your student loan is requires that you pay $89 per month, starting next month for the next 75 months. A debt consolidation company gives you the following offer: It will pay off the balances of your two loans today and then charge you $508 per month for the next 37...
You currently have two loans outstanding: a car loan and a student loan. The car loan...
You currently have two loans outstanding: a car loan and a student loan. The car loan requires that you pay $313 per month, starting next month for 35 more months. Your student loan is requires that you pay $133 per month, starting next month for the next 115 months. A debt consolidation company gives you the following offer: It will pay off the balances of your two loans today and then charge you $451 per month for the next 45...
As a lender you have the option to give out two loans. Loan 1: $300,000 with...
As a lender you have the option to give out two loans. Loan 1: $300,000 with administrative costs of $3,000. Loan 2: $900,000 with administrative costs of $6,000. Which loan is more profitable for the lender and why?
27. Currently, you owe the bank $16,475 on a car loan. The loan has an interest...
27. Currently, you owe the bank $16,475 on a car loan. The loan has an interest rate of 9.25 percent and monthly payments of $285. You realize that you cannot make enough money to keep up with the payments. After talking with your banker and explaining the situation, he has agreed to lower the monthly payments to $225 and keep the interest rate at 9.25 percent. How much longer will it take you to repay this loan than you had...
You are considering two possible fixed-rate level payment loans, Loan A and Loan B. Loan A...
You are considering two possible fixed-rate level payment loans, Loan A and Loan B. Loan A has the following information: loan amount is $300,000, 6.6% contract rate, 30 year maturity with monthly payments, it has a 1.5% upfront fee and a mortgage insurance fee of 1%. Loan B has the following information: loan amount is $300,000, 6.35% contract rate, 30 year maturity with monthly payments, it has a 4% upfront fee and a mortgage insurance fee of 1%. Calculate the...
You are given two loans, with each loan to be repaid by a single payment in...
You are given two loans, with each loan to be repaid by a single payment in the future. Each payment includes both principal and interest. The first loan is repaid by a 3000 payment at the end of four years. The interest is accrued at an annual nominal rate of discount equal to 5% compounded semiannually. The second loan is repaid by a 4000 payment at the end of five years. The interest is accrued at an annual nominal rate...
Using Excel You have just taken a car loan of $15,000. The loan is for 48...
Using Excel You have just taken a car loan of $15,000. The loan is for 48 months at an annual interest rate of 15% (which the bank translates to a monthly rate of 15%/12 = 1.25%). The 48 payments (to be made at the end of each of the next 48 months) are all equal. a) Calculate the monthly payment on the loan. b) Create a loan table: For each month, calculate the principal remaining on the loan at the...
You have just purchased a car and taken out a $46000 loan. The loan has a​...
You have just purchased a car and taken out a $46000 loan. The loan has a​ five-year term with monthly payments and an APR of 6.5 % a. How much will you pay in​ interest, and how much will you pay in​ principal, during the first​ month, second​ month, and first​ year? (Hint: Compute the loan balance after one​ month, two​ months, and one​ year.) b. How much will you pay in​ interest, and how much will you pay in​...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT